Soil organic carbon storage in different agroforestry systems associated with Coffee in Nariño, Colombia
DOI:
https://doi.org/10.15517/am.2024.59765Keywords:
Ecosystem services, agroforestry, soil conservation, CoffeaAbstract
Introduction. Anthropogenic activities are one of the causes of the increase in global temperature, which affects agro-environmental, ecological and socioeconomic processes. The contributions of agricultural production systems in the capture and storage of greenhouse gases have been little studied. Still, the literature indicates that the inclusion of trees on farms is an option to capture and store some greenhouse gases. Objective. To evaluate the relationship between floristic and structural diversity of coffee production systems and soil organic carbon storage (SOC). Materials and methods. The study was carried out during the period 2019-2020, in three localities Sandoná, San Pablo and Buesaco, Nariño-Colombia. Twelve agroecosystems with coffee were visited, where Shannon-Weiner and Simpson indices, tree density and complete soil analysis with samples at 30 cm depth were evaluated. An analysis of variance and principal components was sufficient for the analysis of the information. Results. The SOC was not presented statistical differences (p>0.05), which ranged between 38.55 Mg ha-1 in the full sun coffee arrangement in Buesaco and 96.63 Mg ha-1 in the coffee arrangement with miscellaneous in the same municipality, which presented the highest species diversity. Conclusions. It was proved that the coffee harvest associated with agroforestal systems (T3 and T4) with higher diversity and abundance of species, is higher than carbon accumulated in the soil compared to the monoculture arrangement (80,43 Mg ha-1 vs 58,32 Mg ha-1, severally), this diversification give to the family and enviroment some services and goods, contributing to the mitigation of climate change.
Downloads
References
Aguilar, A., & Guharay, F. (2009). Cómo realizar un diagnóstico productivo en nuestro cafetal (Serie Cuadernos de Campo). Centro Agronómico Tropical de Investigación y Enseñanza. https://repositorio.catie.ac.cr/handle/11554/819
Alvarado, J., Andrade, H., & Segura, M. (2013). Almacenamiento de carbono orgánico en suelos en sistemas de producción de café (Coffea arabica L.) en el municipio del Líbano, Tolima, Colombia. Colombia Forestal, 16(1), 21-31. https://doi.org/10.14483/udistrital.jour.colomb.for.2013.1.a02
Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems and Environment, 99(1-3), 15-27. https://doi.org/10.1016/S0167-8809(03)00138-5
Andrade, H. J., Segura, M., & Somarriba, E. (2022). Above-ground biomass models for dominant trees species in cacao agroforestry systems in Talamanca, Costa Rica. Agroforestry Systems, 96(1), 787–797. https://doi.org/10.1007/s10457-022-00741-y
Ávila, G., Jimenes, F., Beer, J., Gómez, M., & Ibrahim, M. (2001). Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería de las Américas, 8(30), 32-35. https://repositorio.catie.ac.cr/bitstream/handle/11554/5765/Almacenamiento_fijacion_de_carbon.pdf?sequence=1&isAllowed=y
Burbano-Orejuela, H. (2016). El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Revista de Ciencias Agrícolas, 33(2), 117-124. http://dx.doi.org/10.22267/rcia.163302.58
Burbano-Orejuela, H. (2018). El carbono orgánico del suelo y su papel frente al cambio climático. Revista de Ciencias agrícolas, 35(1), 82-96. http://dx.doi.org/10.22267/rcia.183501.85
Canchala, T., Ocampo-Marulanda, C., Alfonso-Morales, W., Carvajal-Escobar, Y., Cerón, W., & Caicedo-Bravo, E. (2022). Techniques for monthly rainfall regionalization in southwestern Colombia. Anais Da Academia Brasileira De Ciências, 94(4), Article e20201000. https://doi.org/10.1590/0001-3765202220201000
Carvajal, A., Feijoo, A., Quintero, H., & Rondón, M. (2009). Carbono orgánico del suelo en diferentes usos del terreno de paisajes andinos colombianos. Revista de la ciencia del suelo y nutrición vegetal, 9(3), 222-235. http://dx.doi.org/10.4067/S0718-27912009000300005
Cerón, W., Kayano, M. T., Andreoli, R. V., Canchala, T., Carvajal-Escobar, Y., & Alfonso-Morales, W. (2021). Rainfall Variability in Southwestern Colombia: Changes in ENSO-Related Features. Pure and Applied Geophysics, 178, 1087–1103. https://doi.org/10.1007/s00024-021-02673-7
Criollo, H., César, T., Bacca, T., & Muñoz, J. A. (2016). Caracterización de los sistemas productivos de café en Nariño, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 19(1), 105–113. https://doi.org/10.31910/rudca.v19.n1.2016.260
Delgado, I., Daza, J., Luna, G., Leonel, H., & Forero, L. (2016). Cuantificación de carbono radical Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur en dos agroecosistemas (Nariño, Colombia). Colombia Forestal, 19(2), 85-93. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.2.a06
Delgado-Vargas, I., Ballesteros, W., & Arellano, V. (2022). Agrobiodiversidad de leñosas multipropósito en sistemas productivos cafeteros. Revista de Investigación Agraria y Ambiental, 13(2), 67–80. https://doi.org/10.22490/21456453.4741
Delgado-Vargas, I. A., Leonel, H. F., Molina-Moreno, Á. A., Chávez, N. O., & Pinta, P. A. (2022). Ethnoedaphology as an integrating process between academy and peasant knowledge in the productive system of coffee (Coffea arabica L.) of Southwestern Colombia. Agricultural Sciences, 13, 1013-1030. https://doi.org/10.4236/as.2022.1310062
Forsythe, W. (1975). Manual de laboratorio: Física de suelos. Instituto Interamericano de Cooperación para la Agricultura. https://repositorio.iica.int/bitstream/handle/11324/7841/BVE19040149e.pdf?sequence=1&isAllowed=y
Gamarra Lezcano, C. C., Díaz Lezcano, M. I., Vera de Ortíz, M., Galeano, M. del P., & Cabrera Cardús, A. J. N. (2018). Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales, 9(46), 4-26. https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/134
Goҫalves, R., Falconeres, R., Dias, R., Fernandes, R., Oda-Souza, M., & Antunes, H. (2023). Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region. Revista Brasileira De Ciência Do Solo, 47, Article e0220124. https://doi.org/10.36783/18069657rbcs20220124
Gómez, E., Rousseau, G., Celentano, D., Fariñas, H., & Gehring, C. (2018). Efecto de la riqueza de especies y estructura de la vegetación en el almacenamiento de carbono en sistemas agroforestales de la Amazonía, Bolivia. Revista de Biología Tropical, 66(4), 1481-1495. http://dx.doi.org/10.15517/rbt.v66i4.32489
Hergoualc’h, K., Blanchart, E., Skiba, U., Hénaultf, C., & Harmanda, J. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 148, 102-110. https://doi.org/10.1016/j.agee.2011.11.018
Hernández, H., Andrade, H., Suárez, J., Sánchez, J., Gutiérrez, D., Gutiérrez, G., Trujillo, E., & Casanovés, F. (2023). Almacenamiento de carbono en sistemas agroforestales en los Llanos Orientales de Colombia. Revista de Biología Tropical, 69(1), 354-368. http://dx.doi.org/10.15517/rbt.v69i1.42959
Holdridge, L. R. (1982). Life zone ecology. Tropical Science Center.
Instituto Geográfico Agustín Codazzi. (2004). Estudio general de suelos y zonificación de tierras departamento de Nariño. https://metadatos.icde.gov.co/geonetwork/srv/api/records/14145369
Intergovernmental Panel on Climate Change. (2023). AR6 synthesis report: Climate Change 2023. https://www.ipcc.ch/report/ar6/syr/
Laban, P., Metternicht, G., & Davies, J. (2018). Biodiversidad de suelos y carbono orgánico en suelos: cómo mantener vivas las tierras áridas. Unión Internacional para la Conservación de la Naturaleza. https://doi.org/10.2305/IUCN.CH.2018.03.es
Leonel, H. F., Delgado-Vargas, I., Molina-Moreno, A., & Cadena-Pastrana, A. (2023). Tipificación de fincas cafeteras para la implementación de tecnologías de adaptación al cambio climático, Municipio de Buesaco (Nariño, Colombia). Información Tecnológica, 34(3), 31-42. https://dx.doi.org/10.4067/S0718-07642023000300031
MacDicken, K. (1997). Guide to monitoring carbon storage in forestry and agroforestry projects. United States. https://www.osti.gov/biblio/362203
Ontong, N., Poolsiri, R., Diloksumpun, S., Staporn, D., & Jenke, M. (2023). Effects of tree functional traits on soil respiration in tropical forest plantations. Forests, 14(4), 715. https://dx.doi.org/10.3390/f14040715
Organización de las Naciones Unidad para la Alimentación y la Agricultura. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra. https://www.fao.org/3/bl001s/bl001s.pdf
Orozco, G., Ordoñez, C., Suárez, J., & López, C. (2014). Almacenamiento de carbono en arreglos agroforestales asociados con café (Coffea arabica L.) en el sur de Colombia. Revista de Investigación Agraria y Ambiental, 5(1), 213-221. https://doi.org/10.22490/21456453.956
Pinoargote, M., Cerda, R., Mercado, L., Aguilar, A., Barrios, M., & Somarriba, E. (2017). Carbon stocks, net cash flow and family benefits from four small coffee plantation types in Nicaragua. Trees and Livelihoods, 26(3), 183-198. https://doi.org/10.1080/14728028.2016.1268544
Poveda, V., Orozco, L., Medina, C., Cerda, R., & López, A. (2013). Almacenamiento de carbono en sistemas agroforestales de cacao en Waslala, Nicaragua. Agroforestería en las Américas, 49, 42-50. https://repositorio.catie.ac.cr/bitstream/handle/11554/5760/Almacenamiento_de_carbono_en_sistemas_agroforestales.pdf?sequence=1&isAllowed=y
Prinandhika, G., Supriyadi, Purwanto, & Dewi, W. (2023). Relationship of macrofauna and soil organic carbon in various types of agroforestry, Sumberejo Village, Batuwarno District, Wonogiri Regency. IOP Conference Series: Earth and Environmental Science, 1168(5), Article 012020. https://doi.org/10.1088/1755-1315/1168/1/012020
Ramos-Prado, J., Romero-Hernández, E., Sánchez-Morales, P., Jiménez-García, D., & Hipólito-Romero, E. (2023). Dimensiones bioculturales y socioeconómicas de la sustentabilidad en sistemas agroforestales diversificados con cacao y vainilla. Revista Mexicana De Ciencias Agrícolas, 14(3), 401-412. https://doi.org/10.29312/remexca.v14i3.3093
R Core Team. (2023). R: A language and environment for statistical computing (R version 4.2.3). R Foundation for Statistical Computing. https://www.R-project.org/
Rodríguez, L., Suárez, J., Rodríguez, W., Artunduaga, K., & Lavelle, P. (2022). Agroforestry systems impact soil macroaggregation and enhance carbon storage in Colombian deforested Amazonia. Geoderma, 348(10). Article 114810. https://doi.org/10.1016/j.geoderma.2020.114810
Rousseau, G., Deheuvels, O., Celentano, D., Arias, I., Hernández-García, L., & Somarriba, E. (2021). Shade tree identity rather than diversity influences soil macrofauna in cacao-based agroforestry systems. Pedobiologia, 89, Article 150770. https://doi.org/10.1016/j.pedobi.2021.150770
Ruíz, F., Gutierrez J., Dorado, J., Mendoza, J., Martínez, C., Rojas, M., Hernández, D., & Rodríguez, M. (2015). Nuevos Escenarios de Cambio Climático para Colombia 2011-2100 Herramientas Científicas para la Toma de Decisiones. ISBN 978-958-8902-55-5
Siles, P., Harmand, J., & Vaast, P. (2010). Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78, 269-286. https://doi.org/10.1007/s10457-009-9241-y
Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espina, T., Mavisoy, H., Ávila, G., Alvarado, E., Poveda, V., Astorga, C., Saya, E., & Deheuvels, O. (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems and Environment, 173, 46-57. https://doi.org/10.1016/j.agee.2013.04.013
Somarriba, E., Saj, S., Orozco-Aguilar, L., & Rapidel, B. (2023). Shade canopy density variables in cocoa and coffee agroforestry systems. Agroforestry System, 98, 585-601. https://doi.org/10.21203/rs.3.rs-2648919/v1
Villanueva, C., Ibrahim, M., & Castillo, C. (2023.). Enteric methane emissions in dairy cows with different genetic groups in the humid tropics of Costa Rica. Animals, 13(4), Article 730. https://doi.org/10.3390/ani13040730
Xiang, Y., Li, Y., Luo, X., Liu, Y., Huang, P., Yao, B., & Zhang, W. (2022). Mixed plantations enhance more soil organic carbon stocks than monocultures across China: Implication for optimizing afforestation/reforestation strategies. Science of the Total Environment, 821, Article 153449. https://doi.org/10.1016/j.scitotenv.2022.153449
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ivan A. Delgado-Vargas, Natalia Benavides Franco
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).