Suplementación de óxido de zinc como sustituto al empleo de antibióticos en cerdos (Sus scrofa domestica)
DOI:
https://doi.org/10.15517/am.2024.54643Palabras clave:
hemoglobina, leucocitos, peso corporal, diarreaResumen
Introducción. Existe una gran preocupación humana por la resistencia a los antibióticos debido a su uso inadecuado como promotores del crecimiento en la cría de animales. Objetivo. Evaluar el efecto de altos niveles de zinc como sustituto del antibiótico en lechones destetados. Material y métodos. El estudio se realizó de junio a agosto de
2022 en la provincia de Chiriquí, Panamá. El periodo experimental estuvo compuesto por tres fases con 14 días por fase.
Los cerdos destetados (n= 54) fueron asignados a uno de tres tratamientos con seis repeticiones por tratamiento y tres cerdos por repetición. Los tratamientos fueron: 1) dieta control, formulada para suplir los requerimientos nutricionales para cerdos destetados; 2) similar al tratamiento 1, más 200 mg de amoxicilina/kg de alimento y 40 mg de florfenicol/kg de alimento durante la fase 1 (P1) y fase 2 (P2), respectivamente; y 3) similar al tratamiento 1, más 2000 ppm y 1600 ppm de zinc durante P1 y P2, respectivamente. En la fase 3 (P3), todos los cerdos fueron alimentados con una dieta común. Resultados. La suplementación con zinc mejoró la ganancia de peso en todas las fases. Los cerdos alimentados con zinc tuvieron mejor relación F:G en P2 en comparación a los cerdos suplementados con antibiótico (p < 0,05). Se
encontró una mayor concentración de hemoglobina y porcentaje de monocitos en cerdos alimentados con zinc que en los otros tratamientos (p < 0,05). Los cerdos alimentados con antibiótico o la dieta control tuvieron un menor porcentaje de materia seca fecal en comparación a los suplementados con zinc (p < 0,05). Conclusión. La suplementación de altos
niveles de zinc ejerció mejoras, en comparación al antibiótico, en cuanto a la concentración de hemoglobina, incidencia
de diarrea y ganancia de peso en cerdos durante los 42 días posteriores al destete.
Descargas
Citas
Association of Analytical Chemists. (2016). Official Methods of Analysis (20th Ed.). AOAC International.
Broxmeyer, H. E. (2013). Erythropoietin: multiple targets, actions, and modifying influences for biological and clinical consideration. Journal of Experimental Medicine, 210(2), 205–208. https://doi.org/10.1084/jem.20122760
Boudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256
Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4, Article 19. https://doi.org/10.1186/2049-1891-4-19
Chen, Y-H., Feng, H-L., & Jeng, S-S. (2018). Zinc Supplementation Stimulates Red Blood Cell Formation in Rats. International Journal of Molecular Science, 19(9), Article 2824. https://doi.org/10.3390/ijms19092824
de Lange, C. F. M., Pluske, J., Gong, J., & Nyachoti, C. M. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1–3), 124–134. https://doi.org/10.1016/j.livsci.2010.06.117
Feng, H-L., Chen, Y-H., & Jeng, S-S. (2019). Effect of zinc supplementation on renal anemia in 5/6-nephrectomized rats and a comparison with treatment with recombinant human erythropoietin. International Journal of Molecular Science, 20(20), Article 4985. https://doi.org/10.3390/ijms20204985
Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. (2017). Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 25(10), 851–873. https://doi.org/10.1016/j.tim.2017.05.004
Goering, M., & Van Soest, P. (1970). Forage fiber analysis (Apparatus, Reagents, Procedures, and Some Applications). Agricultural Research Service, United States Department of Agriculture. https://www.govinfo.gov/content/pkg/GOVPUB-A-PURL-gpo24229/pdf/GOVPUB-A-PURL-gpo24229.pdf
Grondin, J. A., Kwon, Y. H., Far, P. M., Haq, S., & Khan, W. I. (2020). Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Frontiers in Immunology, 11, Article 2054. https://doi.org/10.3389/fimmu.2020.02054
Haase, H., & Rink, L. (2009). The immune system and the impact of zinc during aging. Immunity & Ageing, 6, Article 9. https://doi.org/10.1186/1742-4933-6-9
Han, Y. K., Hwan, I. L., & Thacker, P. A. (2011). Use of a micro-encapsulated eucalyptus-medium chain fatty acid product as an alternative to zinc oxide and antibiotics for weaned pigs. Journal of Swine Health and Production, 19(1), 34–43. https://www.aasv.org/shap/issues/v19n1/v19n1p34.html
He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., & Alvarez, P. J. (2020). Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water, 3, Article 4. https://doi.org/10.1038/s41545-020-0051-0
Hedemann, M. S., Jensen, B. B., & Poulsen, H. D. (2006). Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. Journal of Animal Science, 84(12), 3310–3320. https://doi.org/10.2527/jas.2005-701
Hill, G. M., Mahan, D. C., Carter, S. D., Cromwell, G. L., Ewan, R. C., Harrold, R. L., Lewis, A. J., Miller, P. S., Shurson, G. C., & Veurn, T. L. (2001). Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent of nursery pig performance. Journal of Animal Science, 79(4), 934–941. https://doi.org/10.2527/2001.794934x
Huber, K. L., & Cousins, R. J. (1993). Zinc metabolism and metallothionein expression in bone marrow during erythropoiesis. American Journal of Physiology, Endocrinology and Metabolism, 264(5), E770–E775. https://doi.org/10.1152/ajpendo.1993.264.5.E770
Jeng, S-S., & Chen, Y-H. (2022). Association of zinc with anemia. Nutrients, 14(22), Article 4918. https://doi.org/10.3390/nu14224918
Kim, J. C., Mullan, B. P., Hampson, D. J., & Pluske, J. R. (2008). Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. British Journal of Nutrition, 99(6), 1217–1225. https://doi.org/10.1017/S0007114507868462
Kim, S. J., Kwon, C. H., Park, B. C., Lee, C. Y., & Han, J. H. (2015). Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. Journal of Animal Science and Technology, 57, Article 4. https://doi.org/10.1186/s40781-014-0038-9
Knight, L. C., & Dilger, R. N. (2018). Longitudinal effects of Iron deficiency anemia and subsequent repletion on blood parameters and the rate and composition of growth in pigs. Nutrients, 10(5), Article 632. https://doi.org/10.3390/nu10050632
Konomi, A., & Yokoi, K. (2005). Zinc deficiency decreases plasma erythropoietin concentration in rats. Biological Trace Elements Research, 107, 289–292. https://doi.org/10.1385/BTER:107:3:289
Lee, S. H., Shinde, P., Choi, J., Park, M., Ohh, S., Kwon, I. K., Pak, S. I., & Chae, B. J. (2008). Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs. Biological Trace Element Research, 126(Suppl 1), 57–68. https://doi.org/10.1007/s12011-008-8209-5
Lei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011
Martin, S. J., Mazdai, G., Strain, J. J., Cotter, T. G., & Hannigan, B. M. (1991). Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clinical and Experimental Immunology, 83(2), 338–343. https://doi.org/10.1111/j.1365-2249.1991.tb05639.x
Mudarra, R., Norato, J., Guerra, R., & Melgar, A. (2022). Efectos de la suplementación de niveles farmacológicos de óxido de zinc sobre el desempeño productivo, perfil hematológico y control de diarrea en cerdos. Revista Investigaciones Agropecuarias, 4(2), 58–72. https://revistas.up.ac.pa/index.php/investigaciones_agropecuarias/article/view/2928
National Research Council. (2012). Nutritional requirements of swine (11th ed.). The National Academies Press. https://doi.org/10.17226/13298
Oh, H-J., Park, Y-J., Cho, J-H., Song, M-H., Gu, B-H., Yun, W., Lee, J-H., An, J-S., Kim, Y-J., Lee, J-S., Kim, S., Kim, H., Kim, E. S., Lee, B-K., Kim, B-W., Kim, H. B., Cho, J-H., & Kim, M-H. (2021). Changes in diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microbiome in weaned piglets by different forms of zinc. Animals, 11(5), Article 1356. https://doi.org/10.3390/ani11051356
Pieper, R., Vahjen, W., Neumann, K., Van Kessel, A. G., & Zentek, J. (2012). Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. Journal of Animal Physiology and Animal Nutrition, 96(5), 825–833. https://doi.org/10.1111/j.1439-0396.2011.01231.x
Sapkota, M., & Knoell, D. L. (2018). Essential role of zinc and zinc transporters in myeloid cell function and host defense against infection. Journal of Immunology Research, 2018, Article 4315140. https://doi.org/10.1155/2018/4315140
Seip, V., Friendship, R., Amezcua, R., & Farzan, A. (2020). The relationship between hemoglobin levels at weaning and growth performance and antibody response in nursery pigs. The Canadian Veterinary Journal, 61(11), 1170–1174.
Shin, S. J., Kang, S. G., Nabin, R., Kang, M. L., & Yoo, H. S. (2005). Evaluation of the antimicrobial activity of florfenicol against bacteria isolated from bovine and porcine respiratory disease. Veterinary Microbiology, 106(1–2), 73–77. https://doi.org/10.1016/j.vetmic.2004.11.015
Verstegen, M. W. A., & Williams, B. A. (2002). Alternatives to the use of antibiotics as growth promoters for monogastric animals. Animal Biotechnology, 13(1), 113–127. https://doi.org/10.1081/ABIO-120005774
Wang, Q., Ying, J., Zou, P., Zhou, Y., Wang, B., Yu, D., Li, W., & Zhan, X. (2020). Sodium and zinc oxide on growth performance, immune status and antioxidant capacity of weaned piglets. Animals, 10(11), Article 2104. https://doi.org/10.3390/ani10112104
Wei, X., Tsai, T., Knapp, J., Bottoms, K., Deng, F., Story, R., Maxwell, C., & Zhao, J. (2020). ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms, 8(2), Article 146. https://doi.org/10.3390/microorganisms8020146
Wensley, M. R., Tokach, M. D., Woodworth, J. C., Goodband, R. D., Gebhardt, J. T., DeRouchey, J. M., & McKilligan, D. (2021). Maintaining continuity of nutrient intake after weaning. II. Review of post-weaning strategies. Translational Animal Science, 5(1), 1–16. https://doi.org/10.1093/tas/txab022
Wijtten, P. J. A., van der Meulen, J., & Verstegen, M. W. A. (2011). Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition, 105(7), 967–981. https://doi.org/10.1017/S0007114510005660
Yu, T., Zhu, C., Chen, S., Gao, L., Lv, H., Feng, R., Zhu, Q., Xu, J., Chen, Z., & Jiang, Z. (2017). Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Frontiers in Microbiology, 8, Article 825. https://doi.org/10.3389/fmicb.2017.00825
Yun, J., Olkkola, S., Hänninen, M. L., Oliviero, C., & Heinonen, M. (2017). The effects of amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses, growth and ampicillin resistance of intestinal coliform bacteria in weaned pigs. PLoS ONE, 12(2), Article e0172150. https://doi.org/10.1371/journal.pone.0172150
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Cristian Barría, Richard Mudarra, Reggie Guerra
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).