Bioformulados para mantener la viabilidad de rizobacterias y su aplicación en Theobroma cacao L. CCN-51

Autores/as

DOI:

https://doi.org/10.15517/am.2024.56868

Palabras clave:

control de plagas, gen, inocudidad, microbiología, sustancia bioquímica

Resumen

Introducción. El empleo de bioformulados de rizobacterias promotoras del crecimiento vegetal es una alternativa para reducir la dependencia de pesticidas en la agricultura, por su acción biocontroladora de patógenos y solubilizadora de nutrientes. Objetivo. Evaluar el efecto de los bioformulados sobre la viabilidad celular de las rizobacterias y su influencia en Theobroma cacao L. Materiales y métodos. La investigación se desarrolló de enero a diciembre del año 2020 en los laboratorios de Microbiología y Biología Molecular de la Universidad Técnica Estatal de Quevedo y en la finca Ignolia, La Maná, Ecuador. Se evaluaron: las características potenciales de las bacterias para ser consideradas como rizobacterias; la identificación del gen chiA por reacción de la cadena de la polimerasa; el efecto de los bioformulados sobre la viabilidad celular de rizobacterias y su aplicación a campo para evaluar productividad y estado fitosanitario de T. cacao. Resultados. Las rizobacterias tuvieron la capacidad de solubilizar nutrientes, producir enzimas hidrolíticas y generadoras de biopelículas. El 80 % de las cepas presentaron el gen chiA, con actividad antifúngica contra hongos patógenos. El bioformulado BIO-QPGPRs, con A. calcoaceticus, E. asburiae, S. marcescens, P. protegens y P. veronii, mostró mayor persistencia celular (1,83E+5, 1,80E+5, 1,63E+5 y 1,63E+5) durante los 26 días. Su aplicación edáfica e inyección en temporada lluviosa incrementó las emisiones foliares con 100 y 108; además, redujo la incidencia de Phytophthora spp. y mejoró el rendimiento del grano seco (1270,6 kg/ha). Conclusiones. BIO-QPGPRs conservó las rizobacterias con viabilidad celular durante 26 días. Su aplicación en campo incrementó el número de emisiones foliares, redujo la incidencia de Phytophthora spp. en mazorcas y aumentó el rendimiento del cultivo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Hayron Fabricio Canchignia Martínez , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador

Dayanara Nicolle Tapia Quintana , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador.

Javier Andrés Auhing Arcos , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador.

Cristhian John Macias Holguín , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador.

Citas

Akrofi, A. Y., Terlabie, J. L., Amoako-Attah, I., & Asare, E. K. (2017). Isolation and charac-terization of bacteria from different cacao progenies and their antagonistic activity against the black pod disease pathogen, Phytophthora palmivora. Journal of Plant Diseases and Protection: Scientific Journal of the German Phytomedical Society, 124(2), 143–152. https://doi.org/10.1007/s41348-017-0082-z

Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39–45. https://doi.org/10.1007/bf00369386

Alsultan, W., Vadamalai, G., Khairulmazmi, A., Saud, H. M., Al-Sadi, A. M., Rashed, O., Jaaffar, A. K. M., & Nasehi, A. (2019). Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. European Journal of Plant Pathology, 155(4), 1077–1091. https://doi.org/10.1007/s10658-019-01834-8

Anderson, A. J., & Kim, Y. C. (2020). Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. Journal of Medical Microbiology, 69(3), 361–371. https://doi.org/10.1099/jmm.0.001157

Anith, K. N., Vaishakhi, A. S., Viswanathan, A., Varkey, S., & Aswini, S. (2017). Population dynamics and efficiency of coconut water based liquid formulation of Pseudomonas fluorescens AMB-8. Journal of Tropical Agriculture, 54(2), 184–184. http://jtropag.kau.in/index.php/ojs2/article/view/381

Anzules Toala, V. V. (2019). Sustentabilidad de sistemas de producción de cacao (Theobroma cacao L.) en Santo Domingo de Los Tsáchilas, Ecuador [Tesis de Doctorado, Universidad Nacional Agraria La Molina]. Repositorio Universidad Nacional La Molina. https://repositorio.lamolina.edu.pe/bitstreams/3c4efb87-faf1-4034-9dc0-bb9a15e1e552/download

Arriel-Elias, M. T., Oliveira, M. I., Silva-Lobo, V. L., Corsi Filippi, M. C., Babana, A. H., Cardoso Conceição, E., & Cortes, M. V. de D. B. (2018). Shelf life enhancement of plant growth promoting rhizobacteria using a simple formulation screening method. African Journal of Microbiology Research 12(5), 115–126. https://doi.org/10.5897/AJMR2017.8787

Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I.-B., & Oh, B.-T. (2015). Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. Journal of Environmental Management, 151, 160–166. https://doi.org/10.1016/j.jenvman.2014.12.045

Balmes, P., Cheng, J., Hirae, K., & Kaur, H. (2022). The effect of environmental pH on the antifungal activity of Pseudomonas protegens CHA0 against Verticillium dahliae. Undergraduate Journal of Experimental Microbiology and Immunology, 27, 1–6.

Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1), Article 16975. https://doi.org/10.1038/s41598-020-73489-z

Boateng, K. O., Dankyi, E., Amponsah, I. K., Awudzi, G. K., Amponsah, E., & Darko, G. (2023). Knowledge, perception, and pesticide application practices among small-holder cocoa farmers in four Ghanaian cocoa-growing regions. Toxicology Reports, 10, 46–55. https://doi.org/10.1016/j.toxrep.2022.12.008

Boza, E. J., Motamayor, J. C., Amores, F. M., Cedeño-Amador, S., Tondo, C. L., Livingstone, D. S., Schnell, R. J., & Gutiérrez, O. A. (2014). Genetic characterization of the cacao cultivar CCN 51: Its impact and significance on global cacao improvement and production. Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 139(2), 219–229. https://doi.org/10.21273/jashs.139.2.219

Cadirci, B. H., & Yilmaz, G. (2023). Comparison of in vitro antifungal activity methods using extract of chitinase-producing Aeromonas sp. BHC02. The Protein Journal, 42(2), 125–134. https://doi.org/10.1007/s10930-023-10098-5

Chakravarty, G. (2023). Management of bacterial wilt disease of brinjal by P. fluorescens based bioformulation: experimental investigation. Emerging Issues in Agricultural Sciences, 2, 130–150. https://doi.org/10.9734/bpi/eias/v2/5978A

Chandini, R. K., Kumar, R., & Prakash, O. (2019). The impact of chemical fertilizers on our environment and ecosystem. In P. Sharma (Ed.), Research trends in environmental sciences (2nd ed., Chapter 5, pp. 71–86). De Randeep Kumar.

Chandra, D., & Sharma, A. K. (2021). Field evaluation of consortium of bacterial inoculants producing ACC deaminase on growth, nutrients and yield components of rice and wheat. Journal of Crop Science and Biotechnology, 24(3), 293–305. https://doi.org/10.1007/s12892-020-00077-y

Chávez Arteaga, K. T., Guato Molina, J. J., Rodríguez Acosta, J. L., Cedeño Moreira, Á. V., Romero Meza, R. F., & Canchignia Martínez, H. F. (2020). Rizobacterias con potencial antagonista in vitro a Mycosphaerella fijiensis Morelet. Ciencia y Tecnología, 13(2), 9–16. https://doi.org/10.18779/cyt.v13i2.387

Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from salmonella and Shigella types. Journal of Bacteriology, 52(4), 461–466. https://doi.org/10.1128/jb.52.4.461-466.1946

Cucu, M. A., Gilardi, G., Pugliese, M., Matić, S., Gisi, U., Gullino, M. L., & Garibaldi, A. (2019). Influence of different biological control agents and compost on total and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce Fusarium oxysporum f. sp. lactucae pathosystem. Journal of Applied Microbiology, 126(3), 905–918. https://doi.org/10.1111/jam.14153

Devi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia, 77(10), 2933–2943. https://doi.org/10.1007/s11756-022-01127-2

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). Infostat (Versión 2020). Centro de Transferencia InfoStat. https://www.infostat.com.ar/index.php?mod=page&id=15

Dickson, A. G. (1993). The measurement of sea water pH. Marine Chemistry, 44(2-4), 131–142. https://doi.org/10.1016/0304-4203(93)90198-w

García-Cruzatty, L. C., Vera-Pinargote, L., Zambrano-Gavilanes, F., Zamora-Macías, A., & Cedeño-Ortega, J. (2020). Pollen production in Theobroma cacao L. genotypes national type and CCN-51 and its relationship with climatic factors on the Ecuadorian coast. Acta Agrobotanica, 73(2), Article 7323. https://doi.org/10.5586/aa.7323

Guerra Lopez, M., & Zúñiga Dávila, D. (2018). Producción de Pseudomonas sp. LMTK32 en medio modificado para peletizar semillas de maca (Lepidium meyenii Walp.). Revista Peruana de Biología, 25(2), 161–168. https://doi.org/10.15381/rpb.v25i1.14034

Gutiérrez, O. A., Campbell, A. S., & Phillips-Mora, W. (2016). Breeding for disease resistance in cacao. In B. A. Bailey, & L. W. Meinhardt (Eds.), Cacao diseases (pp. 567–609). Springer International Publishing.

Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, Article 617157. https://doi.org/10.3389/fsufs.2021.617157

Haque, M. M., Khatun, M., Mosharaf, M. K., Rahman, A., Haque, M. A., & Nahar, K. (2023). Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. Biocatalysis and Agricultural Biotechnology, 50, Article 102673. https://doi.org/10.1016/j.bcab.2023.102673

Hipólito-Romero, E., Carcaño-Montiel, M. G., Ramos-Prado, J. M., Vázquez-Cabañas, E. A., López-Reyes, L., & Ricaño-Rodríguez, J. (2017). Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiología, 49(4), 356–365. https://doi.org/10.1016/j.ram.2017.04.003

Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (Eds.) (1994). Bergey’s manual of determinative bacteriology (9th ed.). The Williams & Wilkin.

Hu, X., Chen, J., & Guo, J. (2006). Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22(9), 983–990. https://doi.org/10.1007/s11274-006-9144-2

Jha, Y., & Subramanian, R. B. (2018). From interaction to gene induction: an eco-friendly mechanism of PGPR-mediated stress management in the plant. In D. Egamberdieva, & P. Ahmad (Eds.), Plant microbiome: Stress response (pp. 217–232). Springer Singapore.

King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44(2), 301–307.

Lee, S.-K., Lur, H.-S., Lo, K.-J., Cheng, K.-C., Chuang, C.-C., Tang, S.-J., Yang, Z.-W., & Liu, C.-T. (2016). Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Applied Microbiology and Biotechnology, 100(18), 7977–7987. https://doi.org/10.1007/s00253-016-7582-9

Lobo, C. B., Juárez Tomás, M. S., Viruel, E., Ferrero, M. A., & Lucca, M. E. (2019). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219, 12–25. https://doi.org/10.1016/j.micres.2018.10.012

Loguercio, L. L., Silva, A. C. M., Ribeiro, D. H., de Lima Cruz, J. M. F., Soares, A. C. F., Marbach, P. A. S., Cruz-Magalhães, V., & De Souza, J. T. (2023). Assessing the functional diversity of rhizobacteria from cacao by partitioning root and shoot biomasses. Applied Microbiology and Biotechnology, 107(14), 4647–4663. https://doi.org/10.1007/s00253-023-12603-3

Ma, Y., Wang, Y., Chen, Q., Li, Y., Guo, D., Nie, X., & Peng, X. (2020). Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecological Indicators, 117, Article 106626. https://doi.org/10.1016/j.ecolind.2020.106626

Medina-de la Rosa, G., López-Reyes, L., Carcaño-Montiel, M. G., López-Olguín, J. F., Hernández-Espinosa, M. Á., & Rivera-Tapia, J. A. (2016). Rhizosphere bacteria of maize with chitinolytic activity and its potential in the control of phytopathogenic fungi. Archives of Phytopathology and Plant Protection, 49(11-12), 310–321. https://doi.org/10.1080/03235408.2016.1201345

Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish, Tripathi, Y. N., Zehra, A., Marwal, A., & Upadhyay, R. S. (2020). PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. Journal of Basic Microbiology, 60(10), 828–861. https://doi.org/10.1002/jobm.202000370

Minitab. (2021). Guía del usuario: Software estadístico (Versión 19). Minitab Inc.

Mishra, I., Fatima, T., Egamberdieva, D., & Arora, N. K. (2020). Novel bioformulations developed from Pseudomonas putida BSP9 and its biosurfactant for growth promotion of Brassica juncea (L.). Plants, 9(10), Article 1349. https://doi.org/10.3390/plants9101349

Montes, C., Altimira, F., Canchignia, H., Castro, Á., Sánchez, E., Miccono, M., Tapia, E., Sequeida, Á., Valdés, J., Tapia, P., González, C., & Prieto, H. (2016). A draft genome sequence of Pseudomonas veronii R4: a grapevine (Vitis vinifera L.) root-associated strain with high biocontrol potential. Standards in Genomic Sciences, 11(1), Article 76. https://doi.org/10.1186/s40793-016-0198-y

Moon, C., Seo, D. J., Song, Y. S., Hong, S. H., Choi, S.-H., & Jung, W. J. (2017). Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microbial Pathogenesis, 113, 218–224. https://doi.org/10.1016/j.micpath.2017.10.039

Morales-Ruiz, E., Priego-Rivera, R., Figueroa-López, A. M., Cazares-Álvarez, J. E., & Maldonado-Mendoza, I. E. (2021). Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03. FEMS Microbiology Letters, 368(2), 1–8. https://doi.org/10.1093/femsle/fnaa218

Mustapha, Z., Zakaria, A. J., Othman, R., Mohd, K. S., & Zawawi, D. D. (2022). Effects of growth medium, pH, temperature and salinity on BRIS soil plant growth promoting rhizobacteria (PGPR) growth. International Journal of Agriculture & Biology, 28, 149–155.

Nagrale, D. T., Chaurasia, A., Kumar, S., Gawande, S. P., Hiremani, N. S., Shankar, R., Gokte-Narkhedkar, N., Renu, & Prasad, Y. G. (2023). PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology, 39(4), Article 100. https://doi.org/10.1007/s11274-023-03536-0

Okay, S., & Alshehri, W. A. (2020). Overexpression of chitinase A gene from Serratia marcescens in Bacillus subtilis and characterization of enhanced chitinolytic activity. Brazilian Archives of Biology and Technology, 63, Article e2020200061. https://doi.org/10.1590/1678-4324-2020200061

Pathma, J., Kennedy, R. K., Bhushan, L. S., Shankar, B. K., & Thakur, K. (2021). Microbial biofertilizers and biopesticides: Nature’s assets fostering sustainable agriculture. In R. Prasad, V. Kumar, J. Singh, & C. P. Upadhyaya (Eds.), Recent developments in microbial technologies (pp. 39–69). Springer Nature Singapore.

Peeran, M. F., Nagendran, K., Gandhi, K., Raguchander, T., & Prabakar, K. (2014). Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protection, 65, 186–193. https://doi.org/10.1016/j.cropro.2014.07.010

Peñafiel Jaramillo, M., Barrera Álvarez, A. E., Torres Navarrete, E. D., Canchignia Martínez, H. F., Prieto-Encalada, H., & Morante Carriel, J. (2016). Producción de ácido indol-3-acético por Pseudomonas veronii R4 y formación de raíces en hojas de vid “Thompson seedless” in vitro. Ciencia y Tecnología, 9(1), 31–36. https://revistas.uteq.edu.ec/index.php/cyt/article/view/158

Pérez-Rodriguez, M. M., Pontin, M., Lipinski, V., Bottini, R., Piccoli, P., & Cohen, A. C. (2020). Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. Journal of Soil Science and Plant Nutrition, 20(4), 1614–1624. https://doi.org/10.1007/s42729-020-00233-x

Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362–370.

Ramaiah, N., Hill, R. T., Chun, J., Ravel, J., Matte, M. H., Straube, W. L., & Colwell, R. R. (2000). Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay1. FEMS Microbiology Ecology, 34(1), 63–71. https://doi.org/10.1111/j.1574-6941.2000.tb00755.x

Roman, D. L., Voiculescu, D. I., Filip, M., Ostafe, V., & Isvoran, A. (2021). Effects of triazole fungicides on soil microbiota and on the activities of enzymes found in soil: a review. Agriculture, 11(9), Article 893. https://doi.org/10.3390/agriculture11090893

Ruales, J., Orjuela, H., & Ballesteros, W. (2011). Efecto de la fertilización con diversas fuentes sobre el rendimiento de cacao (Theobroma cacao L.). Revista de Ciencias Agrícolas, 28(2), 81–94. https://sired.udenar.edu.co/840/

Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2004). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian journal of microbiology, 35(1–2), 121–125. https://doi.org/10.1590/s1517-83822004000100020

Sarmiento-López, L. G., López-Meyer, M., Maldonado-Mendoza, I. E., Quiroz-Figueroa, F. R., Sepúlveda-Jiménez, G., & Rodríguez-Monroy, M. (2022). Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. Journal of bioscience and bioengineering, 134(1), 21–28. https://doi.org/10.1016/j.jbiosc.2022.03.007

Sharma, R., & Sharma, S. (2022). Development of native Pseudomonas aeruginosa bioformulations with plant growth promoting potential for apple crop in Himachal Pradesh. Journal of Plant Nutrition, 45(7), 1041–1052. https://doi.org/10.1080/01904167.2021.2003399

Sharpe, A. N., & Kilsby, D. C. (1971). A rapid, inexpensive bacterial count technique using agar droplets. The Journal of Applied Bacteriology, 34(2), 435–440. https://doi.org/10.1111/j.1365-2672.1971.tb02303.x

Sriwati, R., Chamzurn, T., Soesanto, L., & Munazhirah, M. (2019). Field application of Trichoderma suspension to control cacao pod rot (Phytophthora palmivora). AGRIVITA Journal of Agricultural Science, 41(1), 175–182. https://doi.org/10.17503/agrivita.v41i1.2146

Thomas, L., Gupta, A., Gopal, M., George, P., & Thomas, G. V. (2011). Efficacy of rhizosphere Bacillus spp. for growth promotion in Theobroma cacao L. seedlings. Journal of Plantation Crops, 39(1), 19–25.

Tirado-Gallego, P. A., Lopera-Álvarez, A., & Ríos-Osorio, L. A. (2016). Estrategias de control de Moniliophthora roreri y Moniliophthora perniciosa en Theobroma cacao L.: revisión sistemática. Corpoica ciencia y tecnología agropecuaria, 17(3), 417–430. https://doi.org/10.21930/rcta.vol17_num3_art:517

Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), Article 2329. https://doi.org/10.3390/ijms23042329

Verma, A., Verma, S., Singh, M., Mudila, H., & Saini, J. K. (2023). Ecology and mechanisms of plant growth promoting rhizobacteria. Sustainable Agriculture Reviews, 60, 69–93.

Villamizar-Gallardo, R., Osma, J., & Ortíz-Rodriguez, O. (2019). Regional evaluation of fungal pathogen incidence in Colombian cocoa crops. Agriculture, 9(3), Article 44. https://doi.org/10.3390/agriculture9030044

Waisen, P., Cheng, Z., & Criley, R. (2023). Effects of Pseudomonas chlororaphis strain AFS009 and Beauveria bassiana strain GHA against plumeria rust in Hawaii. Plant Protection Science, 59(2), 202–207. https://doi.org/10.17221/86/2022-PPS

Wang, D., Poinsot, V., Li, W., Lu, Y., Liu, C., Li, Y., ... & Gu, W. (2023). Genomic insights and functional analysis reveal plant growth promotion traits of Paenibacillus mucilaginosus G78. Genes, 14(2), Article 392. https://doi.org/10.3390/genes14020392

Yaseen, M., Ahmad, A., Naveed, M., Ali, M. A., Shah, S. S. H., Hasnain, M., Ali, H. M., Siddiqui, M. H., Salem, M. Z. M., & Mustafa, A. (2021). Subsurface-applied coated nitrogen fertilizer enhanced wheat production by improving nutrientuse efficiency with less ammonia volatilization. Agronomy, 11(12), Article 2396. https://doi.org/10.3390/agronomy11122396

Publicado

2024-06-13

Cómo citar

Canchignia Martínez , H. F. ., Tapia Quintana , D. N. ., Auhing Arcos , J. A. . ., Macias Holguín , C. J., Cedeño Moreira, Ángel V., & Vera Benites, L. F. (2024). Bioformulados para mantener la viabilidad de rizobacterias y su aplicación en Theobroma cacao L. CCN-51. Agronomía Mesoamericana, 35, 56868. https://doi.org/10.15517/am.2024.56868