Bioformulated to maintain the viability of rhizobacteria and their application in Theobroma cacao L. CCN-51

Authors

DOI:

https://doi.org/10.15517/am.2024.56868

Keywords:

microbiology, gene, pest control, biochemical substance

Abstract

Introduction. The use of bioformulated plant growth-promoting rhizobacteria is an alternative to reduce the dependence on pesticides in agriculture, due to their pathogen biocontrol and nutrient solubilizing action. Objective. To evaluate the effect of bioformulates on the cell viability of rhizobacteria and their effect on T. cacao L. Materials and methods. The research was developed out from January to December 2020 in the laboratories Microbiology and Molecular Biology of the State Technical University of Quevedo and in the farm "Ignolia", La Maná, Ecuador. The potential characteristics to be considered as a rhizobacteria were evaluated; identification of the chiA gene by Polymerase Chain Reaction; the effect of bioformulates on the cell viability of rhizobacteria and their application in the field to evaluate productivity and phytosanitary status of T. cacao. Results. Rhizobacteria had the capacity to solubilize of nutrients, producers of hydrolytic and biofilm-generating enzymes. Eighty percent of the strains presented the chiA gene, with antifungal activity against pathogenic fungi. The BIOQPGPRs bioformulated with A. calcoaceticus, E. asburiae, S. marcescens, P. protegens and P. veronii showed greater cell persistence (1.83E+5, 1.80E+5, 1.63E+5 and 1.63E+5) during the 26 days. Its edaphic application and injection in the rainy season increased leaf emissions with 100 and 108, and reduce the incidence of Phytophtora spp. and its edaphic application of the bacterial consortium improve dry grain yield (1270.6 kg/ha). Conclusions. BIOQPGPRs preserved rhizobacteria with cell viability for 26 days. Its field application increased the number of foliar emissions, the reduction of Phytophthora spp. incidence on pods and crop yield.

Downloads

Download data is not yet available.

Author Biographies

Hayron Fabricio Canchignia Martínez , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador

Dayanara Nicolle Tapia Quintana , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador.

Javier Andrés Auhing Arcos , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador.

Cristhian John Macias Holguin , Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador

Laboratorio de Microbiología Molecular del Departamento de Biotecnología, Carrera de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, km 1.5 a Santo Domingo de los Tsáchilas, EC. Código Postal 120501, Quevedo, Ecuador.

References

Akrofi, A. Y., Terlabie, J. L., Amoako-Attah, I., & Asare, E. K. (2017). Isolation and characterization of bacteria from different cacao progenies and their antagonistic activity against the black pod disease pathogen, Phytophthora palmivora. Journal of Plant Diseases and Protection: Scientific Journal of the German Phytomedical Society, 124(2), 143–152. https://doi.org/10.1007/s41348-017-0082-z

Alaskar, A. A., & AL-Shwaiman, H. A. (2023). The effect of plant growth-promoting Rhizobacteria on soil properties and the physiological and anatomical characteristics of wheat under water-deficit stress conditions. Agriculture, 13(11), Article 2042. https://doi.org/10.3390/agriculture13112042

Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39–45. https://doi.org/10.1007/bf00369386

Alsultan, W., Vadamalai, G., Khairulmazmi, A., Saud, H. M., Al-Sadi, A. M., Rashed, O., Jaaffar, A. K. M., & Nasehi, A. (2019). Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. European Journal of Plant Pathology, 155(4), 1077–1091. https://doi.org/10.1007/s10658-019-01834-8

Anderson, A. J., & Kim, Y. C. (2020). Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. Journal of Medical Microbiology, 69(3), 361-371. https://doi.org/10.1099/jmm.0.001157

Anith, K. N., Vaishakhi, A. S., Viswanathan, A., Varkey, S., & Aswini, S. (2016). Population dynamics and efficiency of coconut water based liquid formulation of Pseudomonas fluorescens AMB-8. Journal of Tropical Agriculture, 54(2), 184–184. http://jtropag.kau.in/index.php/ojs2/article/view/381

Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I.-B., & Oh, B.-T. (2015). Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. Journal of Environmental Management, 151, 160–166. https://doi.org/10.1016/j.jenvman.2014.12.045

Balmes, P., Cheng, J., Hirae, K., & Kaur, H. (2022). The Effect of Environmental pH on the Antifungal Activity of Pseudomonas protegens CHA0 against Verticillium dahliae. Undergraduate Journal of Experimental Microbiology and Immunology, 27, 1–6.

Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73489-z

Blanco-Romero, E., Garrido-Sanz, D., Rivilla, R., Redondo-Nieto, M., & Martín, M. (2020). In silico characterization and phylogenetic distribution of extracellular matrix components in the model rhizobacteria Pseudomonas fluorescens F113 and other pseudomonads. Microorganisms, 8(11), Article 1740. https://doi.org/10.3390/microorganisms8111740

Boateng, K. O., Dankyi, E., Amponsah, I. K., Awudzi, G. K., Amponsah, E., & Darko, G. (2023). Knowledge, perception, and pesticide application practices among smallholder cocoa farmers in four Ghanaian cocoa-growing regions. Toxicology Reports, 10, 46–55. https://doi.org/10.1016/j.toxrep.2022.12.008

Boza, E. J., Motamayor, J. C., Amores, F. M., Cedeño-Amador, S., Tondo, C. L., Livingstone, D. S., Schnell, R. J., & Gutiérrez, O. A. (2014). Genetic characterization of the cacao cultivar CCN 51: Its impact and significance on global cacao improvement and production. Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 139(2), 219–229. https://doi.org/10.21273/jashs.139.2.219

Cadirci, B. H., & Yilmaz, G. (2023). Comparison of in vitro antifungal activity methods using extract of chitinase-producing Aeromonas sp. BHC02. The Protein Journal, 42(2), 125–134. https://doi.org/10.1007/s10930-023-10098-5

Chakravarty, G. (2023). Management of bacterial wilt disease of brinjal by P. fluorescens based bioformulation: Experimental investigation. Emerging Issues in Agricultural Sciences, 2, 130-150. https://doi.org/10.9734/bpi/eias/v2/5978A

Chandini, R.K., Kumar, R. , & Prakash, O. (2019) The impact of chemical fertilizers on our environment and ecosystem. In P. Sharma (Ed.), Research trends in environmental sciences (2nd ed., Chapter 5, pp. 71-86). De Randeep Kumar.

Chandra, D., & Sharma, A. K. (2021). Field evaluation of consortium of bacterial inoculants producing ACC deaminase on growth, nutrients and yield components of rice and wheat. Journal of Crop Science and Biotechnology, 24(3), 293–305. https://doi.org/10.1007/s12892-020-00077-y

Chang, W.-S., van de Mortel, M., Nielsen, L., Nino de Guzman, G., Li, X., & Halverson, L. J. (2007). Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology, 189(22), 8290–8299. https://doi.org/10.1128/jb.00727-07

Chávez Arteaga, K. T., Guato Molina, J. J., Rodríguez Acosta, J. L., Cedeño Moreira, Á. V., Romero Meza, R. F., & Canchignia Martínez, H. F. (2020). Rizobacterias con potencial antagonista in vitro a Mycosphaerella fijiensis Morelet. Ciencia y Tecnología, 13(2). https://doi.org/10.18779/cyt.v13i2.387

Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from salmonella and Shigella types. Journal of Bacteriology, 52(4), 461–466. https://doi.org/10.1128/jb.52.4.461-466.1946

Cucu, M. A., Gilardi, G., Pugliese, M., Matić, S., Gisi, U., Gullino, M. L., & Garibaldi, A. (2019). Influence of different biological control agents and compost on total and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce Fusarium oxysporum f. sp. lactucae pathosystem. Journal of Applied Microbiology, 126(3), 905-918. https://doi.org/10.1111/jam.14153

Devi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia, 77(10), 2933–2943. https://doi.org/10.1007/s11756-022-01127-2

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). Infostat (Versión 2020). Centro de Transferencia InfoStat. https://www.infostat.com.ar/index.php?mod=page&id=15

Dickson, A. G. (1993). The measurement of sea water pH. Marine Chemistry, 44(2–4), 131–142. https://doi.org/10.1016/0304-4203(93)90198-w

Fatima, T., & Arora, N. K. (2021). Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiological Research, Article 126671. https://doi.org/10.1016/j.micres.2020.126671

Feijoo, I. M. A., & Reinaldo, M. J. R. (2016). Microorganismos eficientes y sus beneficios para los agricultores. Agroecosistemas, 4(2), 31–40. https://aes.ucf.edu.cu/index.php/aes/article/view/84

García-Cruzatty, L. C., Vera-Pinargote, L., Zambrano-Gavilanes, F., Zamora-Macías, A., & Cedeño-Ortega, J. (2020). Pollen production in Theobroma cacao L. genotypes national type and CCN-51 and its relationship with climatic factors on the Ecuadorian coast. Acta Agrobotanica, 73(2), Article 7323. https://doi.org/10.5586/aa.7323

Guerra Lopez, M., & Zúñiga Dávila, D. (2018). Producción de Pseudomonas sp. LMTK32 en medio modificado para peletizar semillas de maca (Lepidium meyenii Walp.). Revista Peruana de Biología, 25(2), 161–168. https://doi.org/10.15381/rpb.v25i1.14034

Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006

Gutiérrez, O. A., Campbell, A. S., & Phillips-Mora, W. (2016). Breeding for disease resistance in cacao. In B. A. Bailey, & L. W. Meinhardt (Eds.), Cacao diseases (pp. 567–609). Springer International Publishing.

Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, Article 617157. https://doi.org/10.3389/fsufs.2021.617157

Haque, M. M., Khatun, M., Mosharaf, M. K., Rahman, A., Haque, M. A., & Nahar, K. (2023). Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. Biocatalysis and Agricultural Biotechnology, 50, Article 102673. https://doi.org/10.1016/j.bcab.2023.102673

Hipólito-Romero, E., Carcaño-Montiel, M. G., Ramos-Prado, J. M., Vázquez-Cabañas, E. A., López-Reyes, L., & Ricaño-Rodríguez, J. (2017). Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiología, 49(4), 356–365. https://doi.org/10.1016/j.ram.2017.04.003

Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (Eds.) (1994). Bergey's manual of determinative bacteriology (9th ed.). The Williams & Wilkin.

Hu, X., Chen, J., & Guo, J. (2006). Two phosphate- and potassium-solubilizing bacteria isolated from tianmu mountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22(9), 983–990. https://doi.org/10.1007/s11274-006-9144-2

Jha, Y., & Subramanian, R. B. (2018). From interaction to gene induction: An Eco-friendly mechanism of PGPR-mediated stress management in the plant. In D. Egamberdieva, & P. Ahmad (Eds.), Plant microbiome: Stress response (pp. 217–232). Springer Singapore.

Khan, A., Singh, A. V., Upadhayay, V. K., Ballabh, A., & Prasad, B. (2022). Influence of PGPR on growth and yield of oat (Avena sativa L.) under field conditions. (2022). Indian Journal of Ecology. 49(4), 1351-1356. https://doi.org/10.55362/ije/2022/3670

King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44(2), 301-307.

Lee, S.-K., Lur, H.-S., Lo, K.-J., Cheng, K.-C., Chuang, C.-C., Tang, S.-J., Yang, Z.-W., & Liu, C.-T. (2016). Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Applied Microbiology and Biotechnology, 100(18), 7977–7987. https://doi.org/10.1007/s00253-016-7582-9

Lobo, C. B., Juárez Tomás, M. S., Viruel, E., Ferrero, M. A., & Lucca, M. E. (2019). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219, 12–25. https://doi.org/10.1016/j.micres.2018.10.012

Loguercio, L. L., Silva, A. C. M., Ribeiro, D. H., de Lima Cruz, J. M. F., Soares, A. C. F., Marbach, P. A. S., Cruz-Magalhães, V., & De Souza, J. T. (2023). Assessing the functional diversity of rhizobacteria from cacao by partitioning root and shoot biomasses. Applied Microbiology and Biotechnology, 107(14), 4647–4663. https://doi.org/10.1007/s00253-023-12603-3

Ma, Y., Wang, Y., Chen, Q., Li, Y., Guo, D., Nie, X., & Peng, X. (2020). Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecological Indicators, 117, Article 106626. https://doi.org/10.1016/j.ecolind.2020.106626

Marina, T. A.-E., Maythsulene, I. S. O., Valacia, L. S.-L., Marta, C. C. F., Amadou, H. B., Edemilson, C. C., & Marcio, V. de C. B. C. (2018). Shelf life enhancement of plant growth promoting rhizobacteria using a simple formulation screening method. African Journal of Microbiology Research, 12(5), 115–126. https://doi.org/10.5897/ajmr2017.8787

Medina-de la Rosa, G., López-Reyes, L., Carcaño-Montiel, M. G., López-Olguín, J. F., Hernández-Espinosa, M. Á., & Rivera-Tapia, J. A. (2016). Rhizosphere bacteria of maize with chitinolytic activity and its potential in the control of phytopathogenic fungi. Archiv Für Phytopathologie Und Pflanzenschutz, 49(11–12), 310–321. https://doi.org/10.1080/03235408.2016.1201345

Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish, Tripathi, Y. N., Zehra, A., Marwal, A., & Upadhyay, R. S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 828–861. https://doi.org/10.1002/jobm.202000370

Minitab. (2021). Guía del usuario: software estadístico (Versión 19). Minitab Inc.

Mishra, I., Fatima, T., Egamberdieva, D., & Arora, N. K. (2020). Novel bioformulations developed from Pseudomonas putida BSP9 and its biosurfactant for growth promotion of Brassica juncea (L.). Plants, 9(10), Article 1349. https://doi.org/10.3390/plants9101349

Montes, C., Altimira, F., Canchignia, H., Castro, Á., Sánchez, E., Miccono, M., Tapia, E., Sequeida, Á., Valdés, J., Tapia, P., González, C., & Prieto, H. (2016). A draft genome sequence of Pseudomonas veronii R4: a grapevine (Vitis vinifera L.) root-associated strain with high biocontrol potential. Standards in Genomic Sciences, 11(1), Article 76. https://doi.org/10.1186/s40793-016-0198-y

Moon, C., Seo, D. J., Song, Y. S., Hong, S. H., Choi, S.-H., & Jung, W. J. (2017). Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microbial Pathogenesis, 113, 218–224. https://doi.org/10.1016/j.micpath.2017.10.039

Mustapha, Z., Zakaria, A. J., Othman, R., Mohd, K. S., & Zawawi, D. D. (2022). Effects of growth medium, pH, temperature and salinity on BRIS soil plant growth promoting rhizobacteria (PGPR) growth. International Journal of Agriculture & Biology, 28, 149–155. https://www.fspublishers.org/Issue.php?no_download=published_papers/72589_03%20doi%2015.1963%20IJAB-22-0095%20%287%29%20149-155.pdf&issue_id=41793

Nagrale, D. T., Chaurasia, A., Kumar, S., Gawande, S. P., Hiremani, N. S., Shankar, R., Gokte-Narkhedkar, N., Renu, & Prasad, Y. G. (2023). PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology, 39(4), Article 100. https://doi.org/10.1007/s11274-023-03536-0

Okay, S., & Alshehri, W. A. (2020). Overexpression of Chitinase A Gene from Serratia marcescens in Bacillus subtilis and Characterization of Enhanced Chitinolytic Activity. Brazilian Archives of Biology and Technology, 63, Article e2020200061. https://doi.org/10.1590/1678-4324-2020200061

Pathma, J., Kennedy, R. K., Bhushan, L. S., Shankar, B. K., & Thakur, K. (2021). Microbial biofertilizers and biopesticides: Nature’s assets fostering sustainable agriculture. In R. Prasad, V. Kumar, J. Singh, & C. P. Upadhyaya (Eds.), Recent developments in microbial technologies (pp. 39–69). Springer Nature Singapore.

Peeran, M. F., Nagendran, K., Gandhi, K., Raguchander, T., & Prabakar, K. (2014). Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protection, 65, 186–193. https://doi.org/10.1016/j.cropro.2014.07.010

Peñafiel Jaramillo, M., Barrera Álvarez, A. E., Torres Navarrete, E. D., Canchignia Martínez, H. F., Prieto-Encalada, H., & Morante Carriel, J. (2016). Producción de ácido indol-3-acético por Pseudomonas veronii R4 y formación de raíces en hojas de vid “Thompson seedless” in vitro. Ciencia y Tecnología, 9(1), 31–36. https://doi.org/10.18779/cyt.v9i1.114

Pérez-Rodriguez, M. M., Pontin, M., Lipinski, V., Bottini, R., Piccoli, P., & Cohen, A. C. (2020). Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato Under Field Conditions. Journal of Soil Science and Plant Nutrition, 20(4), 1614–1624. https://doi.org/10.1007/s42729-020-00233-x

Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362-370.

Ramaiah, N., Hill, R. T., Chun, J., Ravel, J., Matte, M. H., Straube, W. L., & Colwell, R. R. (2000). Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay1. FEMS Microbiology Ecology, 34(1), 63–71. https://doi.org/10.1111/j.1574-6941.2000.tb00755.x

Rangel, F., Santos, R. A., Monteiro, M., Lavrador, A. S., Gasco, L., Gai, F., Oliva-Teles, A., Enes, P., & Serra, C. R. (2022). Isolation of chitinolytic bacteria from European sea bass gut Microbiota fed diets with distinct insect meals. Biology, 11(7), 964. https://doi.org/10.3390/biology11070964

Roman, D. L., Voiculescu, D. I., Filip, M., Ostafe, V., & Isvoran, A. (2021). Effects of triazole fungicides on soil Microbiota and on the activities of enzymes found in soil: A review. Agriculture, 11(9), 893. https://doi.org/10.3390/agriculture11090893

Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2004). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian journal of microbiology, 35(1–2), 121–125. https://doi.org/10.1590/s1517-83822004000100020

Sharma, R., & Sharma, S. (2022). Development of native Pseudomonas aeruginosa bioformulations with plant growth promoting potential for apple crop in Himachal Pradesh. Journal of Plant Nutrition, 45(7), 1041–1052. https://doi.org/10.1080/01904167.2021.2003399

Sharpe, A. N., & Kilsby, D. C. (1971). A rapid, inexpensive bacterial count technique using agar droplets. The Journal of Applied Bacteriology, 34(2), 435–440. https://doi.org/10.1111/j.1365-2672.1971.tb02303.x

Sriwati, R., Chamzurn, T., Soesanto, L., & Munazhirah, M. (2019). Field application of Trichoderma suspension to control cacao pod rot (Phytophthora palmivora). AGRIVITA Journal of Agricultural Science, 41(1). https://doi.org/10.17503/agrivita.v41i1.2146

Stephen, L.-K., Richard, T. A., & Fredrick, K. (2020). Biological control of black pod disease of cocoa (Theobroma cacao L.) with Bacillus amyloliquefaciens, Aspergillus sp. and Penicillium sp. in vitro and in the field. Journal of microbiology and antimicrobials, 12(2), 52–63. https://doi.org/10.5897/jma2020.0434

Thomas L, Gupta A, Gopal, M, George, P and Thomas, G V. (2011). Efficacy of rhizosphere Bacillus spp. for growth promotion in Theobroma cacao L. seedlings. Journal of Plantation Crops, 39(1), 19–25.

Tirado-Gallego, P. A., Lopera-Álvarez, A., & Ríos-Osorio, L. A. (2016). Estrategias de control de Moniliophthora roreri y Moniliophthora perniciosa en Theobroma cacao L.: revisión sistemática. Corpoica ciencia y tecnología agropecuaria, 17(3), 417–430. https://doi.org/10.21930/rcta.vol17_num3_art:517

Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), Article 2329. https://doi.org/10.3390/ijms23042329

Verma, A., Verma, S., Singh, M., Mudila, H., & Saini, J. K. (2023). Ecology and mechanisms of plant growth promoting rhizobacteria. Sustainable Agriculture Reviews 60, 69-93.

Villamizar-Gallardo, R., Osma, J., & Ortíz-Rodriguez, O. (2019). Regional evaluation of fungal pathogen incidence in Colombian cocoa crops. Agriculture, 9(3), Article 44. https://doi.org/10.3390/agriculture9030044

Waisen, P., Cheng, Z., & Criley, R. (2023). Effects of Pseudomonas chlororaphis strain AFS009 and Beauveria bassiana strain GHA against plumeria rust in Hawaii. Plant Protection Science, 59(2), 202-207. https://doi.org/10.17221/86/2022-PPS

Yaseen, M., Ahmad, A., Naveed, M., Ali, M. A., Shah, S. S. H., Hasnain, M., Ali, H. M., Siddiqui, M. H., Salem, M. Z. M., & Mustafa, A. (2021). Subsurface-applied coated nitrogen fertilizer enhanced wheat production by improving nutrient-use efficiency with less ammonia volatilization. Agronomy, 11(12), Article 2396. https://doi.org/10.3390/agronomy11122396

Published

2024-06-13

How to Cite

Canchignia Martínez , H. F. ., Tapia Quintana , D. N. ., Auhing Arcos , J. A. . ., Macias Holguin , C. J., Cedeño Moreira, Ángel V., & Vera Benites, L. F. (2024). Bioformulated to maintain the viability of rhizobacteria and their application in Theobroma cacao L. CCN-51. Agronomía Mesoamericana, 56868. https://doi.org/10.15517/am.2024.56868

Issue

Section

Articles