¿Malezas o arvenses? Una propuesta conceptual para su manejo agroecológico
DOI:
https://doi.org/10.15517/am.2024.56900Palabras clave:
manejo ecológico de malezas, rotación de cultivos, cultivos de cobertura, predación de semillas, biodiversidad funcionalResumen
Introducción. La percepción de que las plantas nativas de campos agrícolas no aportan nada bueno a los sistemas productivos y deben ser eliminadas en su totalidad ha provocado múltiples problemas agronómicos, ambientales y sociales en los agroecosistemas alrededor del mundo, tales como selección de plantas resistentes a herbicidas, contaminación de cuerpos de agua, pérdida de biodiversidad, aumento en las poblaciones de insectos plaga y afectación de la salud de trabajadores agrícolas debido al uso intensivo de herbicidas. Objetivo. Analizar el origen de las malezas en la agricultura, las características biológicas que las hacen perjudiciales para las actividades del ser humano y sus funciones ecológicas en el agroecosistema, así como proponer la aplicación del concepto de biodiversidad funcional para el manejo agroecológico de la vegetación en campos agrícolas. Desarrollo. En este momento de cambio hacia una producción agrícola con un menor uso de plaguicidas, el manejo de las malezas sigue siendo un gran reto. Para lograr que el manejo integrado de malezas avance hacia estrategias agroecológicas que permitan una reducción del uso de herbicidas es necesario promover las interacciones bióticas benéficas que regulan de forma natural a las malezas. El estudio y aplicación de la biodiversidad funcional en los agroecosistemas surge entonces como una necesidad para manejar la vegetación de forma tal que se minimicen los efectos negativos de las malezas en los cultivos y se maximicen los servicios agroecosistémicos de las arvenses. Conclusión. La diferenciación entre malezas y arvenses como parte de un manejo agroecológico de los sistemas de cultivo permitiría mantener un balance positivo entre productividad y biodiversidad en los agroecosistemas.
Descargas
Citas
Adeux, G., Vieren, E., Carlesi, S., Bàrberi, P., Munier-Jolain, N., & Cordeau, S. (2019). Mitigating crop yield losses through weed diversity. Nature Sustainability, 2(11), 1018–1026. https://doi.org/10.1038/s41893-019-0415-y
Anderson, R. L. (2007). Managing weeds with a dualistic approach of prevention and control. A review. Agronomy for Sustainable Development, 27(1), 13–18. https://doi.org/10.1051/agro:2006027
Atencio, R., Goebel, F.-R., & Miranda, R. J. (2019). Entomofauna associated with sugarcane in Panama. Sugar Tech, 21(4), 605–618. https://doi.org/10.1007/s12355-018-0661-8
Baker, H. G. (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5(1), 1–24. https://doi.org/10.1146/annurev.es.05.110174.000245
Bàrberi, P. (2015). Functional biodiversity in organic systems: the way forward? Sustainable Agriculture Research, 4(3), 22–27.
Bàrberi, P., Bocci, G., Carlesi, S., Armengot, L., Blanco-Moreno, J., & Sans, F. (2018). Linking species traits to agroecosystem services: a functional analysis of weed communities. Weed Research, 58(2), 76–88. https://doi.org/10.1111/wre.12283
Bàrberi, P., Burgio, G., Dinelli, G., Moonen, A. C., Otto, S., Vazzana, C., & Zanin, G. (2010). Functional biodiversity in the agricultural landscape: relationships between weeds and arthropod fauna. Weed Research, 50(5), 388–401. https://doi.org/10.1111/j.1365-3180.2010.00798.x
Blanco, Y., & Leyva, Á. (2007). Las arvenses en el agroecosistema y sus beneficios agroecológicos como hospederas de enemigos naturales. Cultivos Tropicales, 28(2), 21–28. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/315
Blanco-Valdes, Y. (2016). El rol de las arvenses como componente en la biodiversidad de los agroecosistemas. Cultivos Tropicales, 37(4), 34–56. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1292
Boinot, S., Alignier, A., & Storkey, J. (2024). Landscape perspectives for agroecological weed management. A review. Agronomy for Sustainable Development, 44(1), 7. https://doi.org/10.1007/s13593-023-00941-5
Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., Denham, T., & Petraglia, M. D. (2016). Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences, 113(23), 6388–6396. https://doi.org/10.1073/pnas.1525200113
Bourgeois, B., Munoz, F., Fried, G., Mahaut, L., Armengot, L., Denelle, P., Storkey, J., Gaba, S., & Violle, C. (2019). What makes a weed a weed? A large-scale evaluation of arable weeds through a functional lens. American Journal of Botany, 106(1), 90–100. https://doi.org/10.1002/ajb2.1213
Bretagnolle, V., & Gaba, S. (2015). Weeds for bees? A review. Agronomy for Sustainable Development, 35, 891–909. https://doi.org/10.1007/s13593-015-0302-5
Campbell, E. G. (1923). What Is a weed? Science, 58(1490), 50–50. https://doi.org/10.1126/science.58.1490.50.a
Cerdà, A., Terol, E., & Daliakopoulos, I. N. (2021). Weed cover controls soil and water losses in rainfed olive groves in Sierra de Enguera, eastern Iberian Peninsula. Journal of Environmental Management, 290, Article 112516. https://doi.org/10.1016/j.jenvman.2021.112516
Cierjacks, A., Pommeranz, M., Schulz, K., & Almeida-Cortez, J. (2016). Is crop yield related to weed species diversity and biomass in coconut and banana fields of northeastern Brazil? Agriculture, Ecosystems & Environment, 220, 175–183. https://doi.org/10.1016/j.agee.2016.01.006
Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111(982), 1119–1144. https://doi.org/10.1086/283241
Davis, A. S., Anderson, K. I., Hallett, S. G., & Renner, K. A. (2006). Weed seed mortality in soils with contrasting agricultural management histories. Weed Science, 54(2), 291–297. https://doi.org/10.1614/WS-05-54.2.291
Davis, A. S., Daedlow, D., Schutte, B. J., & Westerman, P. R. (2011). Temporal scaling of episodic point estimates of seed predation to long-term predation rates. Methods in Ecology and Evolution, 2(6), 682–890. https://doi.org/10.1111/j.2041-210X.2011.00119.x
Emmclan, L. S. H., Zakaria, M. H., & Bujang, J. S. (2018). Utilization of aquatic weeds fibers for handmade papermaking. BioResources, 13(3), 5684–5701. https://bioresources.cnr.ncsu.edu/resources/utilization-of-aquatic-weeds-fibers-for-handmade-papermaking/
Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., & Maggio, A. (2021). Drone and sensor technology for sustainable weed management: A review. Chemical and Biological Technologies in Agriculture, 8(1), Article 18. https://doi.org/10.1186/s40538-021-00217-8
Esposito, M., Westbrook, A. S., Maggio, A., Cirillo, V., & DiTommaso, A. (2023). Neutral weed communities: the intersection between crop productivity, biodiversity, and weed ecosystem services. Weed Science, 71(4), 301–311. https://doi.org/10.1017/wsc.2023.27
Fandohan, A. B., Koko, I. K. E. D., Avocevou-Ayisso, C., Gouwakinnou, G. N., Savi, M. K., Assogbadjo, A. E., & Kakai, R. G. (2015). Lantana camara (Verbenaceae): a potential threat to the effectiveness of protected areas to conserve flora and fauna in Benin. Agronomie Africaine, 27(2), 115–126. https://www.ajol.info/index.php/aga/article/view/125514
Florence, A. M., & McGuire, A. M. (2020). Do diverse cover crop mixtures perform better than monocultures? A systematic review. Agronomy Journal, 112(5), 3513–3534. https://doi.org/10.1002/agj2.20340
Gkisakis, V. D., Barberi, P., & Kabourakis, E. M. (2018). Olive canopy arthropods under organic, integrated, and conventional management. The effect of farming practices, climate and landscape. Agroecology and Sustainable Food Systems, 42(8), 843–858. https://doi.org/10.1080/21683565.2018.1469066
Gómez-Gómez, R., Herrera Murillo, F., & Hernández-Chaves, M. (2008). Control químico de la navajuela (Scleria melaleuca Rchb.f.ex.Schltdl.Cham.) en diferentes estados de desarrollo. Agronomía Mesoamericana, 19(1), 69–79. https://doi.org/10.15517/am.v19i1.5023
Grimm, A., Sahi, V. P., Amann, M., Vidotto, F., Fogliatto, S., Devos, K. M., Ferrero, A., & Nick, P. (2020). Italian weedy rice—A case of de-domestication? Ecology and Evolution, 10(15), 8449–8464. https://doi.org/10.1002/ece3.6551
Hillebrand, H., & Matthiessen, B. (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology letters, 12(12), 1405–1419. https://doi.org/10.1111/j.1461-0248.2009.01388.x
Hitchcock, A. S. (1919). History of the Mexican grass, Ixophorus unisetus. Journal of the Washington Academy of Sciences, 9(18), 546–551.
Howell, A., Leon, R., Everman, W., Mitasova, H., Nelson, S., & Richardson, R. (2023). Performance of unoccupied aerial application systems for aquatic weed management: two novel case studies. Weed Technology, 37(3), 277–286. https://doi.org/10.1017/wet.2023.32
Jayasundera, M., Florentine, S., Tennakoon, K. U., & Chauhan, B. S. (2021). Medicinal value of three agricultural weed species of the Asteraceae family: A review. Pharmacognosy Journal, 13(1), 264–277. https://doi.org/10.5530/pj.2021.13.36
Juliano, L. M., Donayre, D. K. M., Martin, E. C., & Beltran, J. C. (2020). Weedy rice: An expanding problem in direct-seeded rice in the Philippines. Weed Biology and Management, 20(2), 27–37. https://doi.org/10.1111/wbm.12196
Korres, N. E., Norsworthy, J. K., Mauromoustakos, A., & Williams, M. M. (2020). Soybean density and Palmer amaranth (Amaranthus palmeri) establishment time: effects on weed biology, crop yield, and economic returns. Weed Science, 68(5), 467–475. https://doi.org/10.1017/wsc.2020.41
Kudsk, P., & Streibig, J. C. (2003). Herbicides – a two-edged sword. Weed Research, 43, 90–102. https://doi.org/10.1046/j.1365-3180.2003.00328.x
Kumar, N., Bauddh, K., Kumar, S., Dwivedi, N., Singh, D. P., & Barman, S. C. (2013). Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological engineering, 61, 491–495. https://doi.org/10.1016/j.ecoleng.2013.10.004
Labruyere, S., Ricci, B., Lubac, A., & Petit, S. (2016). Crop type, crop management and grass margins affect the abundance and the nutritional state of seed-eating carabid species in arable landscapes. Agriculture, Ecosystems & Environment, 231, 183–192. https://doi.org/10.1016/j.agee.2016.06.037
Lambert, J. P. T., Hicks, H. L., Childs, D. Z., & Freckleton, R. P. (2018). Evaluating the potential of unmanned aerial systems for mapping weeds at field scales: a case study with Alopecurus myosuroides. Weed Research, 58(1), 35–45. https://doi.org/10.1111/wre.12275
Langeland, K. A. (1996). Hydrilla verticillata (LF) Royle (Hydrocharitaceae), the perfect aquatic weed. Castanea, 61(3), 293–304.
Liebman, M., & Gallandt, E. R. (1997). Many little hammers: ecological management of crop-weed interactions. In L. E. Jackson (Ed.), Ecology in agriculture (pp. 291–343). Academic Press.
Ling, X.-J., Zhou, Y.-J., Yang, Y.-S., Xu, Z.-Q., Wang, Y., Sun, J.-L., Zhu, Y., & Wei, J.-F. (2022). A new cysteine protease allergen from Ambrosia trifida pollen: proforms and mature forms. Molecular Immunology, 147, 170–179. https://doi.org/10.1016/j.molimm.2022.05.003
Luna-Castellanos, L. L., Espinosa-Carvajal, M. R., De-La-Ossa-Albis, V. A., Panza-Tapia, B. D., & Garcia-Peña, J. A. (2018). Selección de herbicidas para el control de arvenses en yuca (Manihot esculenta Crantz) en Bolívar, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(3), 621–631. https://doi.org/10.17584/rcch.2018v12i3.7895
MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H., & Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40, Article 24. https://doi.org/10.1007/s13593-020-00631-6
Mahaut, L., Cheptou, P.-O., Fried, G., Munoz, F., Storkey, J., Vasseur, F., Violle, C., & Bretagnolle, F. (2020). Weeds: against the rules? Trends in Plant Science, 25(11), 1107–1116. https://doi.org/10.1016/j.tplants.2020.05.013
Marshall, E., Brown, V., Boatman, N., Lutman, P., Squire, G., & Ward, L. (2003). The role of weeds in supporting biological diversity within crop fields. Weed Research, 43(2), 77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x
Meiss, H., Le Lagadec, L., Munier-Jolain, N., Waldhardt, R., & Petit, S. (2010). Weed seed predation increases with vegetation cover in perennial forage crops. Agriculture, Ecosystems & Environment, 138(1), 10–16. https://doi.org/10.1016/j.agee.2010.03.009
Menalled, F. D., Smith, R. G., Dauer, J. T., & Fox, T. B. (2007). Impact of agricultural management on carabid communities and weed seed predation. Agriculture, Ecosystems & Environment, 118(1), 49–54. https://doi.org/10.1016/j.agee.2006.04.011
Mézière, D., Colbach, N., Dessaint, F., & Granger, S. (2015). Which cropping systems to reconcile weed-related biodiversity and crop production in arable crops? An approach with simulation-based indicators. European Journal of Agronomy, 68, 22–37. https://doi.org/10.1016/j.eja.2015.04.004
Mira Taborda, Y. D., Castañeda Sánchez, D. A., Morales Osorio, J. G., & Patiño Hoyos, L. F. (2022). Ecological, phytosanitary, and agronomic aspects of target weeds for biological control studies in Antioquia, Colombia. Acta Agronómica, 71(2), 195–206. https://doi.org/10.15446/acag.v71n2.99275
Mohd Hanafiah, N., Mispan, M. S., Lim, P. E., Baisakh, N., & Cheng, A. (2020). The 21st century agriculture: when rice research draws attention to climate variability and how weedy rice and underutilized grains come in handy. Plants, 9(3), Article 365. https://doi.org/10.3390/plants9030365
Mohler, C. L., Teasdale, J. R., & DiTommaso, A. (2021). Manage weeds on your farm: A guide to ecological strategies (handbook Series 16). Sustainable Agriculture Research and Education. https://doi.org/10.13016/xhlk-vt7c
Moonen, A.-C., & Bàrberi, P. (2008). Functional biodiversity: an agroecosystem approach. Agriculture, Ecosystems & Environment, 127(1–2), 7–21. https://doi.org/10.1016/j.agee.2008.02.013
Mussa, C., & Mtewa, A. G. (2021). 3 - The world’s most toxic plants service personnel should be wary about. In A. G. Mtewa, & C. Egbuna (Eds.), Phytochemistry, the military and health (pp. 27–36). Elsevier. https://doi.org/10.1016/B978-0-12-821556-2.00019-0
Pancorbo-Olivera, M., Rondinel, F. A. P., Guevara, J. J. T., & Fernández, A. C. (2020). Los otros alimentos: plantas comestibles silvestres y arvenses en dos comunidades campesinas de los andes centrales del Perú. Revista Etnobiología, 18(1), 8–36.
Pardo, G., Gómez, M. I., Cirujeda, A., & Martínez, Y. (2020). Economic costs of sharing the harvester in the control of an invasive weed. Sustainability, 12(21), Article 9046. https://doi.org/10.3390/su12219046
Peraza, S., Arnaude, O., Márquez, R., Becker, J., Vivas, J., & Castro, D. (2002). Enfoque integral sobre la carcinogénesis gástrica y el Pteridium aquilinum (helecho macho). GEN, 56(3), 157–170.
Petit, S., Boursault, A., & Bohan, D. (2014). Weed seed choice by carabid beetles (Coleoptera: Carabidae): linking field measurements with laboratory diet assessments. European Journal of Entomology, 111(5), 615–620. https://doi.org/10.14411/eje.2014.086
Petit, S., Boursault, A., Le Guilloux, M., Munier-Jolain, N., & Reboud, X. (2011). Weeds in agricultural landscapes. A review. Agronomy for sustainable development, 31, 309–317. https://doi.org/10.1051/agro/2010020
Petit, S., Cordeau, S., Chauvel, B., Bohan, D., Guillemin, J. -P., & Steinberg, C. (2018). Biodiversity-based options for arable weed management. A review. Agronomy for Sustainable Development, 38, Article 48. https://doi.org/10.1007/s13593-018-0525-3
Poffenbarger, H. J., Mirsky, S. B., Weil, R. R., Maul, J. E., Kramer, M., Spargo, J. T., & Cavigelli, M. A. (2015). Biomass and nitrogen content of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions. Agronomy Journal, 107, 2069–2082. https://doi.org/10.2134/agronj14.0462
Ranaldo, M., Carlesi, S., Costanzo, A., & Bàrberi, P. (2020). Functional diversity of cover crop mixtures enhances biomass yield and weed suppression in a Mediterranean agroecosystem. Weed Research, 60(1), 96–108. https://doi.org/10.1111/wre.12388
Rao, A. N., Brainard, D. C., Kumar, V., Ladha, J. K., & Johnson, D. E. (2017). Preventive weed management in direct-seeded rice: targeting the weed seedbank. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 144, pp. 45–142). Academic Press. https://doi.org/10.1016/bs.agron.2017.02.002
Reinhardt Piskackova, T. A., Reberg-Horton, C., Richardson, R. J., Jennings, K. M., & Leon, R. G. (2020). Integrating emergence and phenology models to determine windows of action for weed control: a case study using Senna obtusifolia. Field Crops Research, 258, Article 107959. https://doi.org/10.1016/j.fcr.2020.107959
Roux, F., & Reboud, X. (2007). Herbicide resistance dynamics in a spatially heterogeneous environment. Crop Protection, 26(3), 335–341. https://doi.org/10.1016/j.cropro.2005.08.020
Sáenz, Á. S., Cadet-Piedra, E., & Gómez-Gómez, R. (2023). Asociación entre entomofauna y arvenses en caña de azúcar. Agronomía Mesoamericana, 34(3), Article 51502. https://doi.org/10.15517/am.2023.51502
Saratale, R. G., Cho, S. K., Ghodake, G. S., Shin, H. S., Saratale, G. D., Park, Y., Lee, H.-S., Bharagava, R. N., & Kim, D. S. (2020). Utilization of noxious weed water hyacinth biomass as a potential feedstock for biopolymers production: A novel approach. Polymers, 12(8), Article 1704. https://doi.org/10.3390/polym12081704
Schmidt, D., Verruma-Bernardi, M. R., Forti, V. A., & Mendes Ribeiro Borges, M. T. (2023). Quinoa and amaranth as functional foods: a review. Food Reviews International, 39(4), 2277–2296. https://doi.org/10.1080/87559129.2021.1950175
Schumacher, M., Dieterich, M., & Gerhards, R. (2020). Effects of weed biodiversity on the ecosystem service of weed seed predation along a farming intensity gradient. Global Ecology and Conservation, 24, Article e01316. https://doi.org/10.1016/j.gecco.2020.e01316
Sharma, G., Shrestha, S., Kunwar, S., & Tseng, T.-M. (2021). Crop diversification for improved weed management: A review. Agriculture, 11(5), Article 461. https://doi.org/10.3390/agriculture11050461
Shimono, Y., Takiguchi, Y., & Konuma, A. (2010). Contamination of internationally traded wheat by herbicide-resistant Lolium rigidum. Weed Biology and Management, 10(4), 219–228. https://doi.org/10.1111/j.1445-6664.2010.00387.x
Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19(11), 605–611. https://doi.org/10.1016/j.tree.2004.09.003
Slavíková, L., Ibrahim, E., Alquicer, G., Tomašechová, J., Šoltys, K., Glasa, M., & Kundu, J. K. (2022). Weed hosts represent an important reservoir of turnip yellows virus and a possible source of virus introduction into oilseed rape crop. Viruses, 14(11), Article 2511. https://doi.org/10.3390/v14112511
Smith, R. G. (2015). A succession-energy framework for reducing non-target impacts of annual crop production. Agricultural Systems, 133, 14–21. https://doi.org/10.1016/j.agsy.2014.10.006
Storkey, J. (2006). A functional group approach to the management of UK arable weeds to support biological diversity. Weed Research, 46(6), 513–522. https://doi.org/10.1111/j.1365-3180.2006.00528.x
Storkey, J., & Neve, P. (2018). What good is weed diversity? Weed Research, 58(4), 239–243. https://doi.org/10.1111/wre.12310
Storkey, J., & Westbury, D. B. (2007). Managing arable weeds for biodiversity. Pest Management Science: Formerly Pesticide Science, 63(6), 517–523. https://doi.org/10.1002/ps.1375
Vera Díaz, F., Castro Arteaga, C., Gutiérrez Mora, X., & Vásconez Galarza, G. (2020). Alternativas agroecológicas para el control y manejo de arvenses en competencia específica con el cultivo de maíz (Zea mays L.). Revista Caribeña de Ciencias Sociales, 9(6). https://revistacaribena.com/ojs/index.php/rccs/article/view/2249/1775
Vissoh, P. V., Mongbo, R., Gbehounou, G., Hounkonnou, D., Ahanchede, A., Roling, N., & Kuyper, T. W. (2007). The social construction of weeds: different reactions to an emergent problem by farmers, officials and researchers. International Journal of Agricultural Sustainability, 5(2–3), 161–175. https://doi.org/10.1080/14735903.2007.9684820
Zimdahl, R. L. (2018). Fundamentals of weed science (5th ed.). Academic Press.
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Robin Gómez-Gómez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).