Resumen
Se evalúa la utilidad de modelos de frecuencia mixta para pronosticar la tasa de crecimiento trimestral del PIB real de Costa Rica: se estiman modelos bridge y MiDaS con diferentes longitudes de rezago usando información del IMAE y se calculan pronósticos (horizontes de 0-4 trimestres) que se comparan entre sí, con los de modelos ARIMA y con combinaciones de pronósticos. Combinar los pronósticos con mejor ajuste resulta útil especialmente para proyectar en tiempo real, mientras que los MiDaS muestran el mejor desempeño general: al incrementarse el horizonte su precisión disminuye levemente, su porcentaje de acierto de cambios en la tasa de variación del producto permanece estable y varios de ellos son insesgados. Los pronósticos de MiDaS simples con 9 y 12 rezagos resultaron insesgados para todos los horizontes y conjuntos de información evaluados, y son los que mostraron más diferencias significativas en capacidad de pronóstico con todos los demás modelos.Citas
Antipa, P., Barhoumi, K., Brunhes-Lesange, V., & Darné, O. (2012). Nowcasting German GDP: A Comparison of Bridge and Factor Models (Document de Travail No. 401). Banque de France.
Armesto, M. T., Engemann, K. M., & Owyang, M. T. (2010). Forecasting with Mixed Frequencies. Federal Reserve Bank of St. Louis Review, 92(6), 521-36.
Barhoumi, K., Brunhes-Lesange, V., Darné, O., Ferrara, L., Pluyaud, B., & Rouvreau, B. (2008). Monthly Forecasting of French GDP: A Revised Version of the OPTIM Model (Notes d'Études et de Recherche 222). Banque de France.
Barhoumi, K., Darné, O., Ferrara, L., & Pluyaud, B. (2012). Monthly GDP Forecasting Using Bridge Models: Application for the French Economy. Bulletin of Economic Research, 64, s57-s70.
Baumeister, C., Guérin, P., & Kilian, L. (2014). Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work (Working Paper / Document de travail 2014-11). Bank of Canada.
BCCR. (s.f). Metodología de cálculo del Índice Mensual de Actividad Económica (IMAE). Disponible en: http://indicadoreseconomicos.bccr.fi.cr/indicadoreseconomicos/Documentos//DocumentosMetodologiasNotasTecnicas/Metodología%20de%20cálculo%20del%20IMAE.htm
Box, G. E., & Pierce, D. A. (1970). Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 65 (332), 1509–1526.
Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
Bulligan, G., Marcellino, M., & Venditti, F. (2012). Forecasting Economic Activity with Higher Frequency Targeted Predictors (Temi di Discussione 847). Banca d'Italia.
Capistrán, C., & Timmermann, A. (2009). Forecast Combination With Entry and Exit of Experts. Journal of Business & Economic Statistics, 27(4), 428-440.
Chen, X., & Ghysels, E. (2011). News good or bad and its impact on volatility predictions over multiple horizons. Review of Financial Studies, 24(1), 46-81.
Chow, G. C. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica, 28(3), 591–605.
Clements, M. P., & Galvão, A. B. (2006). Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation. (U. o. Department of Economics, Ed.) (Warwick Economic Research Papers No 773).
Cobb, M., Echavarría, G., Filippi, P., García, M., Godoy, C., González, W., y otros. (2011). Short-term GDP Forecasting Using Bridge Models: A Case for Chile (Documentos de Trabajo No. 626). Banco Central de Chile.
Diebold, F. X., & Mariano, R. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253-265.
Doornik, J., & Hansen, H. (1994). A Practical test for Univariate and Multivariate Normality (Discussion Paper). Nuffield College, Oxford University.
Doornik, J., & Hendry, D. F. (1996). Empirical Econometric Modelling Using PcGive 9 for Windows. Londres: Timberlake Consultants Press.
Doornik, J., & Hendry, D. F. (2007). PcGive 12. Londres: Timberlake Consultants Press.
Engle, R., Ghysels, E., & Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3), 776-797.
Ghysels, E. (2012). Macroeconomics and the reality of mixed frequency data. SSRN: http://ssrn.com/abstract=2069998orhttp://dx.doi.org/10.2139/ssrn.2069998.
Ghysels, E. (2014). Matlab Toolbox for Mixed Sampling Frequency Data Analysis usin MIDAS Regression Models. Disponible en http://www.unc.edu/~eghysels/papers/MIDAS_Usersguide_V1.0.pdf.
Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS Touch: Mixed Data Sampling Regression Models. CIRANO Working Papers 2004s-20.
Ghysels, E., Sinko, A., & Valkanov, R. (2006). MIDAS Regressions: Further Results and New Directions. Disponible en SSRN: http://ssrn.com/abstract=885683 or http://dx.doi.org/10.2139/ssrn.885683.
Godfrey, L. G. (1978). Testing for Higher-order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables. Econometrica, 46(6), 1303-1313.
Golinelli, R., & Parigi, G. (2007). The Use of Monthly Indicators to Forecast Quarterly GDP in the Short Run: An Application to the G7 Countries. Journal of Forecasting, 26(2), 77-94.
Gómez, V., & Maravall, A. (1994). Prediction and Interpolation for Nonstationary Series with the Kalman Filter. Journal of the American Statistical Association, 89, 611-624.
Gómez, V., & Maravall, A. (1996). Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996) . Banco de España Working Papers 9628.
Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13, 281-291.
Hendry, D. F. (1979). Predictive Failure and Econometric Modelling in Macroeconomics: The Transactions Demand for Money. En P. Ormerod (Ed.), Economic Modelling (págs. 217-242). Londres: Heinemann.
Hood, C. C., Ashley, J. D., & Findley, D. F. (2000). An Empirical Evaluation fo the Performance of TRAMO/SEATS on Simulated Series. Proceedings of the American Statistical Association, Business and Economics Section, 171-176.
Hoover, K. D., & Perez, S. J. (1999). Data Mining Reconsidered: Encompassing and the General-to-specific Approach to Specification Search. Econometric Journal, 2(2), 167-191.
Ingenito, R., & Trehan, B. (1996). Using Monthly Data to Predict Quarterly Output. Economic Review(3), 3-11.
Jarque, C. M., & Bera, A. K. (1980). Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Economic Letters, 6(3), 255-259.
Klein, L. R., & Sojo, E. (1989). Combinations of High and Low Frequency Data in Macroeconometric Models. En L. R. Klein, & J. Márquez, Economics in Theory and Practice: An Eclectic Approach (págs. 3-16). Dordrecht: Kluwer.
Krolzig, H.-M., & Hendry, D. F. (2001). Computer Automation of General-to-specific Model Selection Procedures. Journal of Economic Dynamics and Control, 25(6-7), 831-866.
Krolzig, H.-M., & Hendry, D. F. (2005). The Properties of Automatic GETS Modelling. The Economic Journal, 115(502), C32-C61.
Kuzin, V., Marcellino, M., & Schumacher, C. (2011). MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area. International Journal of Forecasting, 27, 529–542.
Maravall, A., López-Pavón, R., & Pérez-Cañete, D. (2012). Reliability of the Automatic Identification of ARIMA Models in Program TRAMO. Presentado en el CEMFI Econometrics Workshop, 5 junio de 2012. Madrid, España.
Nicholls, D. F., & Pagan, A. R. (1983). Heteroskedasticity in Models with Lagged Dependent Variables. Econometrica, 51(4), 1233-1242.
Parigi, G., & Shlitzer, G. (1995). Quarterly Forecasts of the Italian Business Cycle by Means of Monthly Economic Indicators. Journal of Forecasting, 14, 117-141.
Trehan, B. (1992). Predicting Contemporaneous Output. Federal Reserve Bank of San Francisco Economic Review(2), 3-11.
White, H. (1980). A Heteroskedastic-consistent Covariance Matrix Estimator and A Direct Test for Heteroskedasticity. Econometrica, 48(4), 817-838.
Winkelried, D. (2012). Predicting quarterly aggregates with monthly indicators. (Serie Documentos de Trabajo DT. N° 2012-023). Banco Central de Reserva del Perú.