Resumen
Los fondos de inversión son clasificados frecuentemente de acuerdo con su objetivo de inversión; sin embargo, esta metodología no garantiza que los productos conformados en un mismo grupo cuenten con un nivel de rendimiento, riesgo y desempeño similares. Por esta razón, en el presente estudio se propone un método de clasificación empleando la técnica del análisis de conglomerado a 92 fondos de inversión del mercado costarricense. Como resultado, se logró separar los 92 fondos de inversión en 8 grupos diferentes, mediante el método de agrupamiento llamado partición alrededor de medoids (PAM). Esta propuesta puede facilitarles a inversionistas y otros actores una mejor planificación estratégica y toma de decisión desde la perspectiva financiera.
Citas
Acharya, D., & Sidana, G. (2007). Classifying mutual funds in India: Some results from clustering. Indian Journal of Economics and Business, 6(1), 71–79.
Babaei, K., Chen, Z., & Maul, T. (2019). Detecting Point Outliers Using Prune-based Outlier Factor (PLOF) (arXiv:1911.01654). arXiv. https://doi.org/10.48550/arXiv.1911.01654
Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is machine learning? A primer for the epidemiologist. American journal of epidemiology, 188(12), 2222–2239. https://doi.org/10.1093/aje/kwz189
Bjärkby, S., & Grägg, S. (2019). A Cluster Analysis of Stocks to Define an Investment Strategy [Bachelor’s thesis, KTH Royal Institute of Technology]. Digitala Vetenskapliga Arkivet. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252746
Bolaños-Ulloa, A., Cascante-Porras, A., Rey-Vargas, J., & Vargas-Solano, R. (2017). Valoración de la rentabilidad y riesgo de Fondos de Inversión de mercado monetario, en el caso de Costa Rica para el periodo 2012-2016 [Tesis de licenciatura, Tecnológico de Costa Rica]. Repositorio TEC. https://hdl.handle.net/2238/10057
Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R package for cluster validation. Journal of Statistical Software, 25(4). https://doi.org/10.18637/jss.v025.i04
Das, N. (2003, julio 11–13). Hedge fund classification using k-means clustering method [conferencia]. 9th International Conference on Computing in Economics and Finance, Washington, Estados Unidos.
Datta, S., & Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics, 19(4), 459–466. https://doi.org/10.1093/bioinformatics/btg025
Dayaratne, D. A. I., Dharmaratne, D. G., & Harris, S. A. (2010). Measuring the Risk and Performance in Plantation Sector Using CAPM Based Jensen’s Alpha. Sabaragamuwa University Journal, 6(1), 68–81. http://doi.org/10.4038/suslj.v6i1.1690
Gamboa-Ulate, S., Gómez-Solano, K., Gutiérrez-Espinoza, L., Quirós-Jiménez, J., Ugalde-Alfaro, M., & Vega-Madriz, A. (2019). Análisis financiero comparativo entre fondos de inversión y fondos de pensión complementaria voluntaria en Costa Rica [Tesis de licenciatura, Tecnológico de Costa Rica]. Repositorio TEC. https://hdl.handle.net/2238/10938
Gitman, L., & Joehnk, M. (2009). Fundamentos de Inversiones (10a ed.). Pearson Educación.
Gitman, L. & Zutter, C. (2016). Principios de administración financiera (14 ed.). Pearson Educación.
Isakov, V. (2019). Performance appraisal of exchange-traded funds using clustering and data envelopment analysis (XETRA, Germany). [Master's thesis, LUT University]. LUTPub. http://urn.fi/URN:NBN:fi-fe2019061720812
Kumar, N. L., & Rama Devi, V. (2011). Cluster Analysis of Mutual Funds. International Journal of Multidisciplinary Research, 1(5), 24–47. http://dspace.cus.ac.in/jspui/handle/1/3823
Lopes, H. E. G., & Gosling, M. de S. (2020). Cluster analysis in practice: Dealing with outliers in managerial research. Revista de Administração Contemporânea, 25(1), e200081. https://doi.org/gzt8
Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of Internal Clustering Validation Measures. En G. I. Webb, B. Liu, C. Zhang, D. Gunopulos, & X. Wu (Eds.), 2010 IEEE International Conference on Data Mining (pp. 911–916). IEEE Computer Society. https://doi.org/c39wqg
Mahesh, B. (2020). Machine learning algorithms—a review. International Journal of Science and Research (IJSR), 9(1), 381–386. https://www.ijsr.net/get_abstract.php?paper_id=ART20203995
Marathe, A., & Shawky, H. A. (1999). Categorizing mutual funds using clusters. Advances in Quantitative analysis of Finance and Accounting, 7(1), 199–204.
Medellu, J. V. C., & Nugraha, E. S. (2021). K-means and k-medoid algorithm application in clustering stock data in Indonesia. Proceeding of The Symposium on Data Science (SDS), 1. http://e-journal.president.ac.id/presunivojs/index.php/SDS/article/view/1726
Menardi, G., & Lisi, F. (2015). Double clustering for rating mutual funds. Electronic Journal of Applied Statistical Analysis, 8(1), 44–56. https://doi.org/gk39c5
Momeni, M., Mohseni, M., & Soofi, M. (2015). Clustering stock market companies via K-means algorithm. Kuwait Chapter of the Arabian Journal of Business and Management Review, 4(5), 75353. https://doi.org/gzt9
Moreno, D., Marco, P., & Olmeda, I. (2006). Self-organizing maps could improve the classification of Spanish mutual funds. European Journal of Operational Research, 174(2), 1039–1054. https://doi.org/10.1016/j.ejor.2004.12.018
Nieto, B., & Rubio, G. (2002). El modelo de valoración con cartera de mercado: una nueva especificación del coeficiente beta. Revista Española de Financiación y Contabilidad, 31(113), 697–723. https://doi.org/10.1080/02102412.2002.10779459
Peachavanish, R. (2016). Stock selection and trading based on cluster analysis of trend and momentum indicators. En S. I. Ao, O. Castillo, C. Douglas, D. Dagan Feng, & A. M. Korsunsky (Eds.), Proceedings of the International MultiConference of Engineers and Computer Scientists (pp. 317–321). Newswood Limited.
Pesce, G., Redondo, J. I., Milanesi, G. S., Menna, J., & Amarilla, R. (2018). Índice multifactorial para la evaluación del desempeño financiero de fondos comunes. Estudios Gerenciales, 34(174), 200–215. https://doi.org/10.18046/j.estger.2018.147.2853
Romesburg, C. (2004). Cluster analysis for researchers. Lulu Press
Sakakibara, T., Matsui, T., Mutoh, A., & Inuzuka, N. (2015). Clustering mutual funds based on investment similarity. Procedia Computer Science, 60, 881–890. https://doi.org/10.1016/j.procs.2015.08.251
SCRiesgo (s.f). Escala de calificaciones. https://web.archive.org/web/20200922084153/https://www.scriesgo.com/ScaleSummary
Sharpe, W. F. (1994). The Sharpe ratio. Journal of portfolio management, 21(1), 49–58. https://doi.org/10.3905/jpm.1994.409501
Shanmugham, R. (2011). Return – based performance analysis of selected equity mutual funds schemes in India – an empirical study. International Journal of Research in Computer Application and Management, 1(1), 113–119.
Suneetha, Y., & Latha, G. (2020). A study on Performance Evaluation of Selected Mutual Funds with special reference to Balanced Funds. Mukt Shabd Journal, IX(5), 2333–2343.
Superintendencia General de Valores. (2021). Boletín quincenal de fondos de inversión. Activos totales administrados y número de cuentas abiertas al 30 de julio de 2021. https://aplicaciones.sugeval.fi.cr/InformesEstadisticas/BoletinFondosInversion
Tamara, D., & Revina, S. (2015). Indonesian Mutual Funds Classification Using Clustering Method. Advanced Science Letters, 21(4), 826–829. https://doi.org/10.1166/asl.2015.5892
Tekin, B., & Gümüş, F. B. (2017). The classification of stocks with basic financial indicators: An application of cluster analysis on the BIST 100 index. International Journal of Academic Research in Business and Social Sciences, 7(5), 104–131. https://doi.org/10.6007/IJARBSS/v7-i5/2881
Verma, M., & Hirpara, M. J. R. (2016). Performance evaluation of portfolio using the Sharpe, Jensen, and Treynor methods. Scholars Journal of Economics, Business and Management, 3(7), 382–390. https://doi.org/gzvf
Zheng-Guo, M., Hernández-Ramírez, M., & Solís, M. (2023). HOW TO CHOOSE INVESTMENTS THAT MATCH YOUR NEEDS? A PROPOSAL FOR THE CATEGORIZATION OF MUTUAL FUNDS FOR LATIN AMERICAN EMERGING MARKETS, CASE OF COSTA RICA [Data set]. OSF. https://doi.org/10.17605/OSF.IO/5RC4M
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0.
Derechos de autor 2023 Maiko Zheng-Guo, Manrique Hernández-Ramírez, Martín Solís