Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Redes neuronales de base radial como modelos dinámicos para la puesta en marcha de columnas de destilación por lotes
PDF
HTML

Archivos suplementarios

Tablas y figuras del trabajo

Palabras clave

Start-up
Distillation
Artificial Neural Networks
modelation
Start-up
destilación
redes neuronales artificiales
proceso de arranque
modelación

Cómo citar

López Sosa, I. J., & Pérez Pacheco, S. A. (2017). Redes neuronales de base radial como modelos dinámicos para la puesta en marcha de columnas de destilación por lotes. Ingeniería, 28(1), 15–28. https://doi.org/10.15517/ri.v28i1.30456

Resumen

En la literatura existen pocos modelos rigurosos para describir el perfil de temperatura durante el periodo de puesta en marcha de las columnas de destilación. En este trabajo, se desarrolla un modelo empleando redes neurales de base radial con datos recolectados durante el período de puesta en marcha de una columna de destilación discontinua para la mezcla etanol y agua. El entrenamiento de la eficacia de la red neuronal se obtiene realizando un pre-procesamiento de las entradas y un cambio de escala. Para obtener el perfil de temperatura, se recolectan datos a lo largo de diferentes puntos de la columna, y los resultados se aplican a múltiples redes. Esto permite la construcción del perfil de temperatura en la columna hasta obtener un error cuadrático medio menor que los valores máximos establecidos durante el preprocesamiento (mse = 0,001) de las redes. Finalmente se obtiene un modelo que permite observar la transición en la columna desde el estado frío vacío hasta el estado estacionario, normalmente un desafío en los modelos convencionales.

https://doi.org/10.15517/ri.v28i1.30456
PDF
HTML

Citas

Albet, J., Le Lann, J. M., Joulia, X., y Koehret, B. (1994a). Evolution et tendances in simulation of rectification discontinue. Chemical Engineering Journal, 54, 85–106.

Albet, J., Le Lann, J. M., Joulia, X., y Koehret, B. (1994b). Operation policies for start-up in the case of batch rectification involving chemical reactions. IChemE Symposium Series 133, 63-70.

Baratti, R., Corti, S. y Servida A. (1997). A feedforward control strategy for distillation columns. Artif. Intell. Eng., 11, 405-412.

Baratti, R., Vacca, G. y Servida, A. (1995). Neural network modelling of distillation columns. Hydrocarbon Proc., 74(6), 35-38.

Barolo, M., Guarise, G. B., Rienzi, S. A., y Trotta, A. (1994). Nonlinear model-based start-up and operation control of a distillation column: an experimental study. Industrial and Engineering Chemistry Research, 33, 3160–3167.

Bonsfills, A. y Puigjaner, L. (2004). Batch Distillation: simulation and experimental validation. Chemical Engineering and Processing, 43(10), 1239-1252.

Broomhead, D. S., y Lowe, D. (1988). Multivariable functional Interpolation and adaptive networks. Complex Systems, 2.

Costa Jr., E. F., Vieira, R. C., Secchi, A. R. y Biscaia Jr., E. C. (2003). Dynamic simulation of high-index models of batch distillation processes. Latin American Applied Research 33,

-160.

Demuth, H. y Beale, M. (1998). Neural network toolbox user’s guide (for use with MATLABTM). The Math Works.

Elgue, S., Prat, L. E., Cabassud, M., Le Lann, J. M. y Cezerac, J. (2004). Dynamic models for startup operations of batch distillation columns with experimental validation. Computers & Chemical Engineering, 2(12), 2735-2747.

Fieg, G., Wozny, G., y Kruse, C. (1993). Experimental and theoretical studies of the dynamics of start-up and product switchover of distillation columns. Chemical Engineering and Processing, 32, 283– 290.

Gani, R., Ruiz, C. A., y Cameron, I. T. (1986). A generalized dynamic model for distillation columns. I. Model description and applications. Computers and Chemistry Engineering, 10(3), 181–198.

González Velasco, J. M., Castresana Pelayo, J. M., González

Marcos, J. A., y Gutiérrez Ortiz, M. A. (1987). Improvements in batch distillation start-up. Industrial and Engineering Chemistry Research, 26, 745–750.

Han, M., y Park, S. (1997). Start-up of distillation columns using nonlinear wave model based control. IFAC Proceedings Volumes, 30(9), 659-665.

Hangos, K. M., Hallager, L., Csaki, Z. S., y Jorgensen, S. B.

(1991). A qualitative model for simulation of the startup of a distillation column with Energy Feedback. En L. Puigjaner & A. Espuna (Eds.), Computer-Oriented Process Engineering, (pp. 87-92).

Kister, H. (1979). When tower startup has problems. Hydrocarbon Processing, 50(2), 89–94.

Lippman, P. (1987). An Introduction to Computing with Neural Networks. IEEE ASSP Magazine, 4-22.

López, I., Rodriguez, M., y Mujica, V. (2011) Modelación de las variables de control en la etapa de preneutralización de fertilizantes NPK vía DAP empleando un sistema adaptativo de inferencia neurodifuso (ANFIS). Revista Ingeniería UC, 18(3).

Lowe, K. (2001). Theoretische und experimentelle Untersuchungen über das Anfahren und die Prozessfuehrung energetisch und stofflich gekoppelter Destillations kolonnen. (Ph.D. thesis). Technische Universität, Berlin.

Lu, J., Fang, N., Lin, J., Chen, F. y Chen, G. (Octubre, 2007). Constructing the Model of Propylene Distillation Based on Neural Networks. Presentado en: 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control Singapore.

Narendra, K. y Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neuronal Networks, 1(1), 4-27.

Nascimento, E. O. y Oliveira, L. N. (2016). Sensitivity Analysis of Cutting Force on Milling Process using Factorial Experimental Planning and Artificial Neural Networks. IEEE Latin America Transactions, 14(12).

Page, G., Gomm, J. y Williams, D. (1993). Application of Neural Networks to Modeling and Control. Chapman & Hall, London.

Pollock, G. y Eldridge, R. (2000). Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate. Ind. Eng. Chem. Res. 2000, (39), 1520-1525.

Reepmeyer, F., Pepke, J. y Wozny, G. (2004). Analysis of the Start-up Process for Reactive Distillation. Chemical Engineering & Technology, 26(1), 81-86.

Rocha, J., Bravo, J. y Fair, J. (1996). Distillation Columns Containing Structured Packings: A Comprehensive Model for their Performance. 2. Mass Transfer Model. Ind. Eng. Chem. Res. 35 (5), 1660-1667.

Ruiz, C., Cameron, I., y Gani, R., (1988). Generalized dynamic model for distillation columns - III. Study of startup operations. Computers and Chemistry Engineering, 12(1), 1– 14

Shi, H. y Zuo, F. (2006). Neural Network Modeling and GA Optimization of DMC Catalyst Distillation System. Journal of Donghua University, Natural Science, 4.

Sorensen, E., y Skogestad, S. (1996). Optimal start-up procedures for batch distillation. Computers and Chemistry Engineering, 20(Suppl.), 1257–1262.

Stephanopoulos, G. y Han, C. (1996). Intelligent systems in process engineering: A review. Comput. Chem. Eng., 20, 743-791.

Wang, L., Li, P., Wozny, G., y Wang, S. (2003). A start-up model for simulation of batch distillation starting from a cold state. Computers and Chemistry Engineering, 27, 1485–1497.

Wittgens, B. y Skogestad, S. (2000). Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response. Modeling, identification and control, 21(2), 83–103.

Wu, H. X., Tang, Z. G., Hu, H., Quan, C., Song, H. H., y Li, S. Y. (2006). Predictions for Start-Up Processes of Reactive Distillation Column via Artificial Neural Network. Chem. Eng. Technol., 29(6), 744-749.

##plugins.facebook.comentarios##

Descargas

Los datos de descargas todavía no están disponibles.