Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Radial Basis Neural Networks as Dynamic Models for the Start-Up of Batch Distillation
PDF (Español (España))
HTML (Español (España))

Supplementary Files

Tablas y figuras del trabajo (Español (España))

Keywords

Start-up
Distillation
Artificial Neural Networks
modelation
Start-up
destilación
redes neuronales artificiales
proceso de arranque
modelación

How to Cite

López Sosa, I. J., & Pérez Pacheco, S. A. (2017). Radial Basis Neural Networks as Dynamic Models for the Start-Up of Batch Distillation. Ingeniería, 28(1), 15–28. https://doi.org/10.15517/ri.v28i1.30456

Abstract

Few rigorous models exist in literature for describing the temperature profile during start-up periods of distillation columns. In this work, a model is developed by applying several radial basis neural networks to data collected during the start-up period of a batch distillation column consisting of ethanol and water. Neural network efficiency training is introduced through rescale entry pre-processing series. To obtain the temperature profile, data points are obtained along different points of the column, and the results are applied to multiple networks. This allows construction of the temperature profile in the column consisting of a mean square error less than the maximum established values set during the efficiency pre-processing (mse = 0.001) of the networks. This model also allows observation of transition in the column from the empty cold state to the steady state, normally a challenge in conventional models.
https://doi.org/10.15517/ri.v28i1.30456
PDF (Español (España))
HTML (Español (España))

References

Albet, J., Le Lann, J. M., Joulia, X., y Koehret, B. (1994a). Evolution et tendances in simulation of rectification discontinue. Chemical Engineering Journal, 54, 85–106.

Albet, J., Le Lann, J. M., Joulia, X., y Koehret, B. (1994b). Operation policies for start-up in the case of batch rectification involving chemical reactions. IChemE Symposium Series 133, 63-70.

Baratti, R., Corti, S. y Servida A. (1997). A feedforward control strategy for distillation columns. Artif. Intell. Eng., 11, 405-412.

Baratti, R., Vacca, G. y Servida, A. (1995). Neural network modelling of distillation columns. Hydrocarbon Proc., 74(6), 35-38.

Barolo, M., Guarise, G. B., Rienzi, S. A., y Trotta, A. (1994). Nonlinear model-based start-up and operation control of a distillation column: an experimental study. Industrial and Engineering Chemistry Research, 33, 3160–3167.

Bonsfills, A. y Puigjaner, L. (2004). Batch Distillation: simulation and experimental validation. Chemical Engineering and Processing, 43(10), 1239-1252.

Broomhead, D. S., y Lowe, D. (1988). Multivariable functional Interpolation and adaptive networks. Complex Systems, 2.

Costa Jr., E. F., Vieira, R. C., Secchi, A. R. y Biscaia Jr., E. C. (2003). Dynamic simulation of high-index models of batch distillation processes. Latin American Applied Research 33,

-160.

Demuth, H. y Beale, M. (1998). Neural network toolbox user’s guide (for use with MATLABTM). The Math Works.

Elgue, S., Prat, L. E., Cabassud, M., Le Lann, J. M. y Cezerac, J. (2004). Dynamic models for startup operations of batch distillation columns with experimental validation. Computers & Chemical Engineering, 2(12), 2735-2747.

Fieg, G., Wozny, G., y Kruse, C. (1993). Experimental and theoretical studies of the dynamics of start-up and product switchover of distillation columns. Chemical Engineering and Processing, 32, 283– 290.

Gani, R., Ruiz, C. A., y Cameron, I. T. (1986). A generalized dynamic model for distillation columns. I. Model description and applications. Computers and Chemistry Engineering, 10(3), 181–198.

González Velasco, J. M., Castresana Pelayo, J. M., González

Marcos, J. A., y Gutiérrez Ortiz, M. A. (1987). Improvements in batch distillation start-up. Industrial and Engineering Chemistry Research, 26, 745–750.

Han, M., y Park, S. (1997). Start-up of distillation columns using nonlinear wave model based control. IFAC Proceedings Volumes, 30(9), 659-665.

Hangos, K. M., Hallager, L., Csaki, Z. S., y Jorgensen, S. B.

(1991). A qualitative model for simulation of the startup of a distillation column with Energy Feedback. En L. Puigjaner & A. Espuna (Eds.), Computer-Oriented Process Engineering, (pp. 87-92).

Kister, H. (1979). When tower startup has problems. Hydrocarbon Processing, 50(2), 89–94.

Lippman, P. (1987). An Introduction to Computing with Neural Networks. IEEE ASSP Magazine, 4-22.

López, I., Rodriguez, M., y Mujica, V. (2011) Modelación de las variables de control en la etapa de preneutralización de fertilizantes NPK vía DAP empleando un sistema adaptativo de inferencia neurodifuso (ANFIS). Revista Ingeniería UC, 18(3).

Lowe, K. (2001). Theoretische und experimentelle Untersuchungen über das Anfahren und die Prozessfuehrung energetisch und stofflich gekoppelter Destillations kolonnen. (Ph.D. thesis). Technische Universität, Berlin.

Lu, J., Fang, N., Lin, J., Chen, F. y Chen, G. (Octubre, 2007). Constructing the Model of Propylene Distillation Based on Neural Networks. Presentado en: 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control Singapore.

Narendra, K. y Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neuronal Networks, 1(1), 4-27.

Nascimento, E. O. y Oliveira, L. N. (2016). Sensitivity Analysis of Cutting Force on Milling Process using Factorial Experimental Planning and Artificial Neural Networks. IEEE Latin America Transactions, 14(12).

Page, G., Gomm, J. y Williams, D. (1993). Application of Neural Networks to Modeling and Control. Chapman & Hall, London.

Pollock, G. y Eldridge, R. (2000). Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate. Ind. Eng. Chem. Res. 2000, (39), 1520-1525.

Reepmeyer, F., Pepke, J. y Wozny, G. (2004). Analysis of the Start-up Process for Reactive Distillation. Chemical Engineering & Technology, 26(1), 81-86.

Rocha, J., Bravo, J. y Fair, J. (1996). Distillation Columns Containing Structured Packings: A Comprehensive Model for their Performance. 2. Mass Transfer Model. Ind. Eng. Chem. Res. 35 (5), 1660-1667.

Ruiz, C., Cameron, I., y Gani, R., (1988). Generalized dynamic model for distillation columns - III. Study of startup operations. Computers and Chemistry Engineering, 12(1), 1– 14

Shi, H. y Zuo, F. (2006). Neural Network Modeling and GA Optimization of DMC Catalyst Distillation System. Journal of Donghua University, Natural Science, 4.

Sorensen, E., y Skogestad, S. (1996). Optimal start-up procedures for batch distillation. Computers and Chemistry Engineering, 20(Suppl.), 1257–1262.

Stephanopoulos, G. y Han, C. (1996). Intelligent systems in process engineering: A review. Comput. Chem. Eng., 20, 743-791.

Wang, L., Li, P., Wozny, G., y Wang, S. (2003). A start-up model for simulation of batch distillation starting from a cold state. Computers and Chemistry Engineering, 27, 1485–1497.

Wittgens, B. y Skogestad, S. (2000). Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response. Modeling, identification and control, 21(2), 83–103.

Wu, H. X., Tang, Z. G., Hu, H., Quan, C., Song, H. H., y Li, S. Y. (2006). Predictions for Start-Up Processes of Reactive Distillation Column via Artificial Neural Network. Chem. Eng. Technol., 29(6), 744-749.

Comments

Downloads

Download data is not yet available.