Abstract
The performance of catalysts has been shown to be strongly dependent on their methods of preparation. A study to examine the relationship between catalyst preparation procedures and the structure, dispersion, activity, and selectivity of the finished catalyst is reported. 10 wt.% Ni/γ-Al2O3 catalysts were prepared by incipient wetness impregnation and by wet impregnation. The catalysts were used in the conversion of glycerol in gas phase and atmospheric pressure. The selectivity and activity of the catalysts were affected by the preparation method employed. The catalysts were characterized by TGA, TPR, N2-physorption, H2-chemisorption, XRD, TEM, FTIR and TPO. The Ni particle size and dispersion of the catalysts affected the selectivity to hydrogenolysis and dehydration routes, and the formation of carbon deposits was also affected.
References
Barrientos, J., Lualdi, M., Boutonnet, M., Järås, S. Deactivation of supported nickel catalysts during CO methanation. Appl Catal A. 2014;486:143-9.
Miranda, B. C., Chimentão, R. J., Santos, J.B.O., Gispert-Guirado, F., Llorca, J., Medina, F. et al. Conversion of glycerol over 10%Ni/γ-Al2 O3 catalyst. Appl Catal B. 2014;147:464-80.
Huang, Y. -J., Barrett, B.T., Schwarz, J. A. The effect of solution variables on metal weight loading during catalyst preparation. Appl Catal. 1986;24:241-8.
Huang, Y.-J., Schwarz, J. A. The effect of catalyst preparation on catalytic activity: I. The catalytic activity of Ni/Al2 O3 catalysts prepared by wet impregnation. Appl Catal. 1987;30:239-53.
Huang, Y.-J., Schwarz, J. A. The effect of catalyst preparation on catalytic activity: II. The design of Ni/Al2
O3 catalysts prepared by wet impregnation. Appl Catal. 1987;30:255-63.
Bartholomew, C.H., Farrauto, R. J. Chemistry of nickel-alumina catalysts. J Catal. 1976;45(1):41-53.
Wang, S., G.Q.M., Lu. CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique. Appl Catal B Environ. 1998;16:269-77.
Bezemer, G. L., Bitter, J. H., Kuipers, H. P. C. E., Oosterbeek, H., Holewijn, J. E., Xu, X. et al. Cobalt particle size effects in the Fischer-Tropsch Reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc. 2006;128(12):3956-64.
Frelink, T., Visscher, W., van Veen, J.A.R. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem. 1995;382:65-72.
Morikawa, K., Shirasaki, T., Okada. M. Correlation among methods of preparation of solid catalysts, their structures, and catalytic activities. Adv Catal. 1969;20:97-133.
Campelo, J. M., García, A., Gutierrez, J. M., Luna, D., Marinas, J.M. AlPO4-supported nickel catalysts. V. Effect of carrier, nickel precursor and nickel loading on particle size and I-hexene hydrogenation activity. Appl Catal. 1983;7:307-15.
Pinna, F. Supported metal catalysts preparation. Catal Today. 1998;41:129-37.
Kester, K.B., Falconer, J.L. J Catal. 1984;89:380.
Kester, B., Zagli, E., Falconer. J.L. Appl Catal. 1986;22:311.
Tsai, W., Schwarz, J.A., Driscoll, C.T. J Catal. 1982;78:88.
Huang, Y.-J., Schwarz, J.A. The effect of catalyst preparation on catalytic activity: III. The catalytic activity of Ni/Al2 O3 catalysts prepared by incipient wetness. Appl Catal. 1987;32:45-57.
Boudart, M., McDonald, M.A. J Phy Chem. 1984;88(11):2185.
Huang, Y.-J., Schwarz, J.A. Effect of Catalyst Preparation on Catalytic Activity VII. The Chemical Structures on Nickel/Alumina Catalysts: Their Impact on the Formation of Metal-Support Interactions. Appl Catal. 1988;37:229-45.
Huang, Y.-J., Schwarz, J.A. Effect of Catalyst Preparation on Catalytic Activity V. Chemical Structures on Nickel/Alumina Catalysts. Appl Catal. 1988;36:163-75.
Huang, Y.-J., Schwarz, J.A. Effect of Catalyst Preparation on Catalytic Activity VI. Chemical Structures on Nickel/Alumina Catalysts: their Impact on the Rate-Determining Step in the Hydrogenation of Carbon Monoxide. Appl Catal. 1988;36:177-88.
Huang, Y.-J., Schwarz, J.A. The effect of catalyst preparation on catalytic activity: IV. The design of Ni/Al2
O3 catalysts prepared by incipient wetness. Appl Catal. 1987;32:59-70.
Bartholomew, C.H., Pannell, R.B., Butler. J.L. Support and crystallite size effects in CO hydrogenation on nickel. J Catal. 1980; 65:335-347.
Gurbania, A., Ayastuya, J.L., Gonzalez-Marcosa, M.P., Herrero, J.E., Guilb, J.M., Gutierrez-Ortiz, M.A. Comparative study of CuO–CeO2 catalysts prepared by wet impregnation and deposition–precipitation. Int J Hydrogen Energy. 2009;34:547-53.
Anderson, J. R., Pratt, K.C. Introduction to Characterization and Testing of Catalysts. New York: Academic Press; 1985.
Chen, I., Shiue, D.W. Reduction of Nickel-Alumina Catalysts. Ind Eng Chem Res. 1988;27(3):429-34.
Chen, I., Lin, S., Shiue, D. Calcination of Nickel/Alumina Catalysts. Ind Eng Chem Res. 1988;27(6):926-9.
Sietsma, J. R.A., Friedrich, H., Broersma, A., Versluijs-Helder, M., Jos van Dillen, A., de Jongh, P. E. et al. How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts. J Catal. 2008;260:227–35.
Li, G., Hu, L., Hill, J.M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Appl Catal A. 2006;301:16-24.
Richardson, J.T., Lei, M., Turk, B., Forster, K., Twigg, M.V. Reduction of model steam reforming catalysts: NiO/α-Al2
O3. Appl Catal A. 1994;110(2):217-37.
Velu, S., Gangwal, S.K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption. Solid State Ionics. 2006;177:803 – 11.
Velu, S., K. Suzuki, M. Vijayaraj, S. Barman, C.S. Gopinath. Appl Catal, B Environ. 2005;55:287–99.
Miranda, B.C., Chimentão, R.J., Szanyi, J., Braga, A.H., Santos, J.B.O., Gispert-Guirado, F. et al. Influence of copper on nickel-based catalysts in the conversion of glycerol. Appl Catal. 2015;166-167:166-80.
Lif, J., Odenbrand, I., Skoglundh, M. Sintering of alumina-supported nickel particles under amination conditions: Support effects. Appl Catal A. 2007;317:62-9.
Sing, K., Everet, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603-19.
Hadjiivanov, K., Mihaylov, M., Klissurski, D., Stefanov, P., Abadjieva, N., Vassileva, E. et al. Characterization of Ni/SiO2
catalysts prepared by successive deposition and reduction of Ni2+ ions. J Catal. 1999;185:314-23.
Zhu, X., Zhang, Y-p., Liu, C-j. CO adsorbed infrared spectroscopy study of Ni/Al2O3 catalyst for CO2 reforming of methane. Catal Lett. 2007;118:306-12.
Mihaylov, M., Lagunov, O., Ivanova, E., Hadjiivanov, K. Determination of polycarbonyl species on nickel-containing catalysts by adsorption of CO isotopic mixtures. Top Catal. 2011;54:308-17.
Sinfelt, J.H. Specificity in catalytic hydrogenolysis by metals. Adv Catal. 1973;23:91-119.
Biloen, P., Helle, J. N., Verbeek, H., Dautzenberg, F. M., Sachtler, W.M.H. The role of rhenium and sulfur in platinum-based hydrocarbon-conversion catalysts. J Catal. 1980;63:112-8.
Soma-Noto, Y., Sachtler, W.M.H. Infrared spectra of carbon monoxide adsorbed on supported palladium and palladium-silver alloys. J Catal. 1974;32:315-24.
Hornésa, A., Bera, P., Fernández-García, M., Guerrero-Ruiz, A., Martínez-Arias, A. Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition. Appl Catal B. 2012;111-112:96-105.
de Sousa, F. F., de Sousa, H. S. A., Oliveira, A. C., Junior, M. C., Ayala, A. P., Barros, E.B. et al. Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int J Hydrogen Energy. 2012;37:3201-12.
Ferrari, A. C., Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095-107.
Ferrari, A.C., Kleinsorge, B., Adamopoulos, G., Robertson, J., Milne, W.I., Stolojan, V. et al. Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivity. J Non-Cryst Solids. 2000;266-269: 765-8.
Corma, A., Miguel, P. J., Orchilles, A.V. The Role of reaction temperature and cracking catalyst characteristics in determining the relative rates of protolytic cracking, chain propagation, and hydrogen transfer. J Catal. 1994;145:171-80.
Suprun, W., Lutecki, M., Haber, T., Papp, H. Acidic catalysts for the dehydration of glycerol: Activity and deactivation. J Mol Catal A: Chem. 2009;309:71-78.