Resumen
Se considera el problema de la convergencia, cuando t → +∞, de las soluciones del sistema (1). Se asume que las funciones α, f y g son de clase C1 para todos los valores de sus argumentos y que además g′(x) > 0, f ′(x) ≥ r > 0, 0 < n ≤ α′(y) ≤ N < +∞ y las funciones a(t) y p(t) son continuas sobre [0, +∞) con 0 < a ≤ a(t) ≤ A < +∞ y p(t) ≥ 0.
Citas
Alonso, J.M.; Ortega R. (1995) “Boundedness and global asymptotic stability of a forced oscillator”, Nonlinear Anal. 25: 297–309.
Bibikov, Y.N. (1976) “Convergence in Liénard equation with a forcing term”, Vestnik LGU 7: 73–75 (russian).
Nápoles, J.E. “On the boundedness and global stability of solutions of a system of differential equations”, to appear in Rev. Ciencias Matemáticas, Universidad de La Habana (spanish).
Nápoles, J.E. “On the global stability of non-autonomous systems”, submited for publication.
Nazarov, E.A. (1977) “The coming together of the solutions of Liénard’s equation” , Differencial ’nye Uravnenija 13: 1792–1795 (russian).
Opial, Z. (1960-61) “Sur un théorème de C.E. Langenhop et G. Seifert ”, Ann. Polon. Math.9: 145–155.
Repilado, J.A.; J.E. Nápoles. “On the convergence of solutions of a bidimensional system to unique periodic solution ”, submited for publication.
Ruiz, A. (1993) “On the convergence of solutions of system x′=h(y) − f(x), y′= −g(x) + p(t) to a bounded solution ”, Rev. Ciencias Matemáticas, Universidad de La Habana (spanish).