Resumen

En este trabajo se desarrolla GNM-NIPALS para formar parte de los métodos NM-PLS, el cual permite cuantificar las variables cualitativas de una matriz de datos mixtos mediante una función lineal de k componentes principales, tipo reconstitución, maximizando la inercia en el plano k- dimensional asociado al ACP de la matriz así cuantificada. Es entonces una generalización del algoritmo NM-NIPALS que usa solo la primera componente principal en la cuantificación de variables cualitativas. De la maximización y positividad de la razón de correlación entre cada variable cualitativa y la función reconstituida, se tiene que la inercia acumulada en el plano k-dimensional asociado a la función de cuantificación del mismo rango, es mayor o igual que la generada en planos de igual dimensión pero con funciones de cuantificación de diferente rango. Con las k componentes principales asociadas a la matriz así cuantificada, se desarrolla el análisis de inercia saturada para evaluar si aún existe una dimensión k∗< k, a partir de la cual la inercia acumulada en los ejes de orden igual o superior ya esta explicada, caso en el cual la función de cuantificación definitiva es de rango menor (k∗).

     
Palabras clave: NM-PLS, ACP, datos mixtos, cuantificación, k-dimensional, inercia saturada, maximal, razón correlación