Resumen
En esta nota mostraremos que la proyección métrica asociada a subespacios de Chebyshev en espacios de Banach que poseen la propiedad (ωM) es una aplicación continua.
Citas
Brown, A.L. (1974) “A Rotund reflexive space having a subspace of Codimension two with a discontinous metric projection”, Mich. Math. J.21: 145–151.
Fitzpatrick, S. (1980) “Metric projections and the diffentiability of distance functions”, Bull. Austral. Math. Soc. 22: 291–312.
Giles, J. R. (1982) Convex analysis with application in differentiation of Convex functions. Pitman Research Notes in Mathematics 58.
Holmes, R.A Course on optimization and Best approximation. Lecture Notes in Mathematics, 257, Springer-Verlag.
Bor-Luh Lin; Zhang, W. (1991) Some Geometric Properties Related to Uniform Convexity of Banach Spaces. Functions Spaces. Lecture Notes in Pure and Appl. Math.,Marcel Decker,136: 281–294.
Morales, J. R. (1992) “La Propiedad (k−M) en espacios de Banach”, Notas de Matemáticas ULA, 118.
Morales, J. R. (1992) “Sobre los espacios k−M”, Revista Colombiana de Matemáticas 26: 115–120.
Morales, J. R. “Una nota sobre los espacios LωR”. Por aparecer.
Narang, T.D. (1977) “Convexity of Chebyshev Sets”, Nic. Arc. V. W.3, XXV: 377–402.
Sullivan, F. (1979) “A generalization of uniformly rotund Banach spaces”,Can. J. Math. 31: 628–636.
Yu Xintai (1985) “On LkU R spaces”, Chin. Ann of Math. 6B(4): 465–469.
Holmes, R.; Kripke, B. (1968) “Smoothness of approximation”, Michigan Math. J.15: 225–248.
Nan-Chao; Wang-Jian Hua (1988) “On the LK-UR y L-KR spaces”, Math. Proc. Camb. Phili. Suc. 104: 521–526.
Morales, J.R. “Los espacios LωR”. Por aparecer.
##plugins.facebook.comentarios##
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 1997 José R. Morales