Resumen
Se estudian tres algoritmos de reducción para bigráficas diferenciales: regularización, eliminación de objetos y reducción de una flecha. En cada caso se determina la bigráfica resultante y la relación entre las respectivas categorías de representaciones. Éstos algoritmos se aplican luego a las bigráficas 'schurian'.Citas
[ARS] Auslander, M.; Reiten, I.; Smalo, S. (1995) Representation Theory of Artin Algebras. Cambridge Univ. Press, Cambridge.
[BCS] Bautista, R.; Colavita, L.; Salmerón, L. (1981) “On Adjoint Funtors in Representation Theory”, in Representations of Algebras, Lecture Notes in Mathematics 903, Springer-Verlag: 9–25.
[BK] Bautista, R.; Kleiner, M. (1990) “Almost split sequences for relatively projective modules”, J. Algebra 135: 19–56.
[Bo] Boza, J. (1996) Algoritmos de Reducción en la Teoría de Representaciones de Cóalgebras. Tesis doctoral, UNAM, México.
[BZ] Bautista, R.; Zuazúa, R. (1996) “Morita equivalence and reduction algorithms for representations of coalgebras”, Canadian Math. Soc., Conference Proc. 18: 51–80.
[CB1] Crawley-Boevey, W.W. (1988) “On tame algebras and bocses”, Proc. London Math. Soc. 56(3): 451–483.
[CB1] Crawley-Boevey, W.W. (1992) “Modules of finite length over their endomorphism rings”, in Representations of Algebras and Related Topics, Cambridge Univ. Press, No. 168: 127–184.
[CB3] Crawley-Boevey, W.W. “Matrix reductions for Artinian rings, and an application to rings of finite representation type’, Journal of Algebra 157(1): 1–25.
[D1] Drozd, Y.A. (1980) “Tame and wild matrix problems”, in Representation Theory II, Lecture Notes in Mathematics 832, Springer-Verlag: 242–258.
[D2] Drozd, Y.A. (1986) “Tame and wild matrix problems”, Amer. Math. Soc. Transl. 128(2): 31–55.
[D3] Drozd, Y.A. (1992) “Matrix problems, small reduction and representations of a class of mixed Lie groups”, in Representations of Algebras and Related Topics, Cambridge Univ. Press, No. 168: 225–249.
[K] Kleiner, M. (1984) “Matrix problems and representations of finite dimensional algebras”, Proceed. IV-ICRA, Carleton Univ., Ottawa.
[MacL] MacLane, S. (1988) “Categories for the Working Mathematician”. Springer-Verlag.
[M] Montaño, G. (1993) “Caracterización de bocses de dimensión finita de tipo manso”. Tesis de Maestría, UNAM, México.
[O] Ovsienko, S.A. (1993) “Generic representations of freebocses”, Preprint 93-03, Universität Bielefeld, 28 p.
[Ri] Ringel, C.M. (1984) Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, 1099, Springer-Verlag.
[Ro] Roiter, A.V. (1980) “Matrix problems and representations of bocs’s”, in Lecture Notes in Mathematics 831, Springer-Verlag: 288–324.
[RK] Roiter, A.V.; Kleiner, M. “Representations of differential graded categories”, in Lecture Notes in Mathematics 488, Springer-Verlag: 316–339.
[S] Simson, D. (1992) “Linear representations of partially ordered sets and vector space categories”, Gordon and Breach, Switzerland.
##plugins.facebook.comentarios##
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 1997 Juan Boza Cordero