Resumen

La producción primaria (GPP) es difícil de medir y simular en estudios de cambio climático con múltiples especies de vegetación y con variabilidad en elevación. Los modelos tienden a proveer una representación de los procesos dinámicos a través de análisis a largo plazo usando parametrizaciones generalizadas. Incluso métodos actualizados de modelación no contemplan fácilmente la variación de GPP a diferentes elevaciones y para diferentes tipos de vegetación en regiones como los páramos, debido principalmente a la inexistencia de datos. En estos modelos, la información de las celdas son comúnmente promediadas y por lo tanto factores como la elevación media,eco-fisiología de la vegetación y otros parámetros son generalizados. El modelo de vegetación BIOME-BGC fue aplicado en un área de estudio dentro de la región andina Ecuatoriana a elevaciones superiores a los 4000 msnm donde existe una presencia típica de vegetación de páramo para 10 años de simulación (periodo 2000-2009). La estimación de la diferencia de la GPP obtenida usando una generalización de altura y tipo de vegetación predominante puede conducir a una mejor estimación de la incertidumbre en la magnitud de los errores en modelos climáticos globales. Este estudio explora la relación entre la GPP de tres tipos de vegetación agrupados de acuerdo a sus formas de crecimiento a tres rangos altitudinales y dos factores climáticos (Radiación de onda corta y deficiencia de presión de vapor). Debido a la importancia de la medición de posibles errores o las diferencias en el uso de valores promedio de datos meteorológicos e ecofisiológicos, aquí presentamos un análisis multivariado de la diferencia dinámica de la GPP en el tiempo con respecto al rango altitu- dinal y al tipo de vegetación. El modelo multivariable Copula nos permite identificar y clasificar los cambios de GPP por tipo de vegetación y por rango altitudinal. El modelo cópula distribuido Frank fue el que mejor se acopló entre la GPP y las variables climáticas y nos permitió entender mejor la dependencia entre estas variables. Los resultados podrían explorar situaciones extremas donde estrategias simplificadas promedio podrían confundir. El cambio de GPP en el tiempo es esencial para futuros escenarios climáticos del almacenamiento y liberación de carbón del ecosistema hacia la atmósfera. Nuestros resultados sugieren que la clasificación de esta diferencia es muy importante que sea extendida a celdas que tienen propiedades similares.
Palabras clave: clasificación multivariada, cópula, BIOME-BGC, GPP, páramos