Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Clasificación y análisis multivariado de diferencias en producción primaria bruta en diferentes elevaciones usando biome-bgc en los páramos, región andina ecuatoriana
PDF (English)

Palabras clave

multivariate classification
copula
BIOME-BGC
GPP
páramos
clasificación multivariada
cópula
BIOME-BGC
GPP
páramos

Cómo citar

Minaya, V., Corzo, G., Van Der Kwast, J., Galárraga, R., & Mynett, A. (2015). Clasificación y análisis multivariado de diferencias en producción primaria bruta en diferentes elevaciones usando biome-bgc en los páramos, región andina ecuatoriana. Revista De Matemática: Teoría Y Aplicaciones, 22(2), 369–394. https://doi.org/10.15517/rmta.v22i2.21602

Resumen

La producción primaria (GPP) es difícil de medir y simular en estudios de cambio climático con múltiples especies de vegetación y con variabilidad en elevación. Los modelos tienden a proveer una representación de los procesos dinámicos a través de análisis a largo plazo usando parametrizaciones generalizadas. Incluso métodos actualizados de modelación no contemplan fácilmente la variación de GPP a diferentes elevaciones y para diferentes tipos de vegetación en regiones como los páramos, debido principalmente a la inexistencia de datos. En estos modelos, la información de las celdas son comúnmente promediadas y por lo tanto factores como la elevación media,eco-fisiología de la vegetación y otros parámetros son generalizados. El modelo de vegetación BIOME-BGC fue aplicado en un área de estudio dentro de la región andina Ecuatoriana a elevaciones superiores a los 4000 msnm donde existe una presencia típica de vegetación de páramo para 10 años de simulación (periodo 2000-2009). La estimación de la diferencia de la GPP obtenida usando una generalización de altura y tipo de vegetación predominante puede conducir a una mejor estimación de la incertidumbre en la magnitud de los errores en modelos climáticos globales. Este estudio explora la relación entre la GPP de tres tipos de vegetación agrupados de acuerdo a sus formas de crecimiento a tres rangos altitudinales y dos factores climáticos (Radiación de onda corta y deficiencia de presión de vapor). Debido a la importancia de la medición de posibles errores o las diferencias en el uso de valores promedio de datos meteorológicos e ecofisiológicos, aquí presentamos un análisis multivariado de la diferencia dinámica de la GPP en el tiempo con respecto al rango altitu- dinal y al tipo de vegetación. El modelo multivariable Copula nos permite identificar y clasificar los cambios de GPP por tipo de vegetación y por rango altitudinal. El modelo cópula distribuido Frank fue el que mejor se acopló entre la GPP y las variables climáticas y nos permitió entender mejor la dependencia entre estas variables. Los resultados podrían explorar situaciones extremas donde estrategias simplificadas promedio podrían confundir. El cambio de GPP en el tiempo es esencial para futuros escenarios climáticos del almacenamiento y liberación de carbón del ecosistema hacia la atmósfera. Nuestros resultados sugieren que la clasificación de esta diferencia es muy importante que sea extendida a celdas que tienen propiedades similares.
https://doi.org/10.15517/rmta.v22i2.21602
PDF (English)

Citas

Bell, S. (1999) “A beginner’s guide to uncertainty of measurement”, Measurement Good Practice Guide 11(2), National Physical Laboratory, Teddington, United Kingdom.

Cavieres, L.A.; Quiroz, C.L.; Molina-Montenegro, M.A.; Muñoz, A.A.; Pauchard, A. (2005) “Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile”, Perspectives in Plant Ecology, Evolution and Systematics 7: 217–226.

Chowdhary,H.; Singh, V.P. (2010) “Reducing uncertainty in estimates of frequency distribution parameters using composite likelihood approach and copula-based bivariate distributions”, Water Resources Research 46: 1–23.

Cleveland, C.C.; Townsend, A.R.; Schimel, D.S.; Fisher, H.; Howarth, R.W.; Hedin, L.O.; Perakis, S.S.; Latty, E.F.; Von Fischer, J.C.; Elseroad, A.; Wasson, M.F. (1999) “Global patterns of terrestrial biological nitrogen

(N2) fixation in natural ecosystems”, Global Biogeochemical Cycles 13: 623–645.

Cong, R.G.; Brady, M. (2012) “The interdependence between rainfall and temperature: Copula analyses”, The Scientific World Journal 2012: 1–12.

Crabtree, R.; Potter, C.; Mullena, R.; Sheldona, J.; Huang, S.; Harmsena, J.; Rodmanc, A.; Jeanc, C. (2009) “A modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator”, Remote Sensing of Environment 113: 1486–1496.

Diemer, M. (1998) “Leaf lifespans of high-elevation, a seasonal Andean shrub species in relation to leaf traits and leaf habit”, Global Ecological Biogeography 7: 457–465.

Dufour, A.; Gadallah, F.; Wagner, H.H.; Guisan, A.; Buttler, A. (2006) “Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration”, Ecography 29: 573–584.

FAO (2010) “Grassland carbon sequestration: management, policy and economics”, Proceedings of the Workshop on the Role of Grassland Carbon Sequestration in the Mitigation of Climate Change, Food and Agriculture Organization of the United Nations, Rome.

[Farquhar et al.(1980)] Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. (1980) “A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 species”, Planta 149: 78–90.

Gebremichael, M.; Krajewski, W.F. (2007) “Application of copulas to modeling Ttemporal sampling errors in satellite-derived rainfall estimates”, Journal of Hydrologic Engineering 12: 404–408.

Genest, C.; Favre, A.C. (2007) “Everything you always wanted to know about copula modeling but were afraid to ask”, Journal of Hydrologic Engineering 12: 347–368.

Gill, R.A.; Jackson, R.B. (2000) “Global patterns of root turnover for terrestrial ecosystems", New Phytologist 147: 13–31.

Gräler, B.; Kazianka, H.; Espindola, G.M. de (2010) “Copulas, a novel approach to model spatial and spatio-temporal dependence”, GIScience for Environmental Change Symposium Proceedings 40: 49–54.

Hofert, M.; Kojadinovic, I.; Maechler, M.; Yan, J. (2013) “Multivariate dependence with copula”, in: Repository CRAN.

Ito, A.; Oikawa, T. (2004) “Global mapping of terrestrial primary productivity and Light use efficiency with a process-based model”, in: M. Shiyomi et al. (Eds.) Global Environmental Change in the Ocean and on Land: 343–358.

Jung, M.; Le Maire, G.; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; Reichstein, M. (2007a) “Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe”, Biogeosciences 4: 647–656.

Jung, M.; Vetter, M.; Herold, M.; Churkina, G.; Reichstein, M.; Zaehle, S.; Ciais, P.; Viovy, N.; Bondeau, A.; Chen, Y.; Trusilova, K.; Feser, F.; Heimann, M. (2007b) “Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models”, Global Biogeochemical Cycles 21(4): 1–12.

Kelliher, F.M.; Leuning, R.; Raupach, M.R.; Schulze, E.D. (1995) “Maximum conductances for evaporation from global vegetation types”, Agriculture for Meteorology 73: 1–16.

Kimball, J.S.; Running, S.W.; Saatchi, S.S. (1999) “Sensitivity of boreal forest regional water flux and net primary production simulations to subgrid-scale land cover complexity”, Geophysical Research 104(D22): 789–801.

Kimball, J.S.; Keyser, A.R.; Running, S.W.; Saatchi, S.S. (2000) “Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps”, Tree Physiology 20: 761–775.

Line, M.A.; Loutit, M.W. (1973) “Studies on non-symbiotic nitrogen fixation in New Zealand tussock-grassland soils”, New Zealand Journal of Agricultural Research 16: 87–94.

Minaya, V.; Corzo, G.; Romero-Saltos, H.; van der Kwast, J.; Lantinga, E.; Galarraga-Sanchez, R.; Mynett, A.E. (In press) “Altitudinal analysis of carbon stocks and biomass distribution in the páramo”.

Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. (1997) “Increased plant growth in the northern high latitudes between 1981-1991”, Nature 386: 698–702.

Nobel, P.S. (1991) Physicochemical and Environmental Plant Physiology. Academic Press, San Diego.

Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; Ashmore, M.R.; Ineson, P. (2006) “Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts”, Global Change Biology 12: 470–476.

R Development Core Team (2007) “A Language and Environment for Statistical Computing”, in: http://www.R-project.org/.

Ralph, C.P. (1978) “Observations on Azorella Compacta (Umbelliferae), a tropical Andean cushion plant”, Biotropica 10(1): 62–67.

Ramsay, P.M.; Oxley, E.R.B. (1997) “The growth form composition of plant communities in the ecuadorian páramos”, Plant Ecology 131: 173–192.

Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. (Eds) (2000) Global terrestrial gross and net primary productivity from the Earth Observing System. Springer-Verlag, New York.

Scott, D. (1961) “Methods of measuring growth in short tussocks”, New Zealand Journal of Agricultural Research 4(3-4): 282–285.

Shaver, G.R.; Canadell, J.; Chapin, F.S.; Gurevitch, J.; Harte, J.; Henry, G.; Ineson, P.; Jonasson, S.; Melillo, J.; Pitelka, L.; Rustad, L. (2000) “Global warming and terrestrial ecosystems: a conceptual framework for analysis”, BioScience 50(10): 871–882.

Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplans, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; Thonicke, K.; Venevsky, S. (2003) “Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model”, Global Change Biology 9(2): 161–185.

Sklar, A. (1959) Fonctions de Répartition á n Dimensions et Leurs Marges. Publications de l’Institut de Statistique de l’Université de Paris.

Thornton, P.E. (1998) Regional Ecosystem simulation:combining surface and satellite based observations to study linkages between terrestrial energy and mass budgets. Ph.D. Thesis, University of Montana, Missoula.

Thornton, P.E. (2000) “Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria”, Agricultural and Forest Meteorology 104: 255–271.

Thornton, P.E.; Running, S.W. (1999) “An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation”, Agricultural and Forest Meteorology 93: 211–228.

Thornton, P.E.; Rosenbloom, N.A. (2005) “Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model”, Ecological Modelling 89: 25–48.

Trusilova, K.; Churkina, G. (2008) The terrestrial ecosystem model GBIOME-BGCv1. Max-Planck Institut für Biogeochemie, Jena, Germany.

Trusilova, K.; Trembath, J.; Churkina, G. (2009) “Parameter estimation and validation of the terrestrial ecosystem model BIOME-BGC using eddy-covariance flux measurements”, Technical Report 16, Max Planck Institut für Biogeochemie, Jena, Germany.

VEMAP (1995) “Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental scale study of terrestrial ecosystem responses to climate change and CO2 doubling”, Global Biogeochemical Cycles 9: 407–437.

Wang, M.; Rennolls, K.; Tang, S. (2008) “Bivariate distribution modeling of tree diameters and heights: dependency modeling using copulas”, Forest Science 54: 284–293.

Wang, W.; Ichiic, K.; Hashimoto, H.; Michaelisa, A.R.; Thornton, P.E.; Lawe, B.E.; Nemanib, R.R. (2009) “A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration”, Ecological Modelling 220: 2009–2023.

White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. (2000) “Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls”, Earth Interactions 4(3): 1–85.

Wullschleger, S.D. (1993) “Biochemical limitations to carbon assimilation in C3 plants - A retrospective analysis of the A/Ci curves from 109 species”, Journal of Experimental Botany 44: 907–920.

Yan, J. (2006) Multivariate Modeling with Copulas and Engineering Applications, in: H. Pham (Ed.) Handbook in Engineering Statistics:. 973–990.

Zhao, M.; Running, S.W.; Nemani, R.R. (2006) “Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses”, Geophysical Research 111: 1–13.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2015 Veronica Minaya, Gerald Corzo, Johannes Van Der Kwast, Remigio Galárraga, Arthur Mynett

Descargas

Los datos de descargas todavía no están disponibles.