Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Differentially closed fields of characteristic zero with a generic automorphism
PDF

Palabras clave

Mathematical logic
model theory
differential fields
difference fields
Lógica matemática
teoría de modelos
campos diferenciales
campos de diferencia

Cómo citar

Bustamante Medina, R. F. (2007). Differentially closed fields of characteristic zero with a generic automorphism. Revista De Matemática: Teoría Y Aplicaciones, 14(1), 81–100. https://doi.org/10.15517/rmta.v14i1.282

Resumen

Hrushovski demostró que la teoría de campos diferenciales de diferencia de característica cero tiene una modelo-compaẽra, la cual denotaremos DCFA. En el presente artículo damos una axiomatización para DCFA y probamos algunos resultados modelo-teoréticos de importancia como la supersimplicidad y la eliminación los imaginarios. Mencionamos algunas propiedades del campo fijo y del campo de constantes de un modelo de DCFA.

 

https://doi.org/10.15517/rmta.v14i1.282
PDF

Citas

Chatzidakis, Z.; Hrushovski, E. (1999) “Model theory of difference fields”, Transactions of the American Mathematical Society 351(8): 2997–3071.

Chatzidakis, Z.; Pillay, A. (1998) “Generic structures and simple theories”, Annals of Pure and Applied Logic 95(1-3): 71–92.

Cohn, R.M. (1965) Difference Algebra. Interscience Publishers John Wiley & Sons, New York-London-Sydney.

Cohn, R.M. (1969) “Systems of ideals”, Canad. J. Math. 21: 783–807.

Cohn, R.M. (1970) “A difference-differential basis theorem”, Canad. J. Math. 22: 1224–1237.

Kim, B.; Pillay A. (1997) ”Simple theories”, Annals of Pure Applied Logic, 88(2-3):149-164.

Kolchin, E.R. (1973) Differential Algebra and Algebraic Groups. Pure and Applied Mathematics, Vol. 54, Academic Press, New York.

Lang, S. (1965) Algebra. Addison-Wesley Publishing Co., Inc., Reading, Massachusets.

Lejeune, H. (1995) Paires de Corps P.A.C. Parfaits, Paires de Corps Pseudofinis. Thèse de Doctorat, Université de Paris 7, Paris.

Marker, D.; Messmer, M.; Pillay, A. (1996) Model Theory of Fields, volume 5 of Lecture Notes in Logic. Springer-Verlag, Berlin.

Marker, D. (2000) “Model theory of differential fields”, in: Haskell, D. Pillay, A. Steinhorn, C. (Eds.) Model Theory, Algebra, and Geometry, volume 39 of Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge: pages 53–63.

Pierce, D.; Pillay, A. (1998) “A note on the axioms for differentially closed fields of characteristic zero”, J. Algebra 204(1): 108–115.

Pillay, A.; Polkowska, D. (2004) “On PAC and bounded substructures of a stable structure”, Preprint, University of Illinois at Urbana-Champaign, Illinois.

Poizat, B. (1985) Cours de Théorie des Modèles. Une introduction à la logique mathématique contemporaine. Bruno Poizat, Lyon.

van den Dries, L.; Schmidt, K. (1984) “Bounds in the theory of polynomial rings over fields. A nonstandard approach”, Invent. Math. 76(1): 77–91.

Wood, C. (1998) “Differentially closed fields”, in: E. Bouscaren (Ed.) Model Theory and Algebraic Geometry, volume 1696 of Lecture Notes in Math., Springer, Berlin: pages 129–141.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.