Resumen
Demostramos que propiedades elementales de polinomios de Laguerre generan operadores escalera para la función de onda del oscilador radial armónico en dos dimensiones.
Citas
Wallace, P.R. (1984) Mathematical Analysis of Physical Problems. Dover, New York.
Abramowitz, M.; Stegun, I.A. (1972) Handbook of Mathematical Functions. John Wiley and Sons, New York.
Infeld, L. (1942) “A generalization of the factorization method of solving eigenvalue problems”, Trans. Canad. Roy. Soc. Ser. III 36: 7–18.
Infeld, L.; Hull, T.E. (1948) “The factorization method, hydrogen intensities and related problems”, Phys. Rev. 74: 905–909.
Infeld, L. (1949) “The factorization method and its application to differential equations in Theoretical Physics”, Proc. Symp. Appl. Math. 28: 58–65.
Infeld, L.; Hull, T.E. (1951) “The factorization method”, Rev. Mod. Phys. 23: 21–68.
López-Bonilla, J. ; Morales, J.; Rosales, M. (1995) “Hypervirial theorem and matrix elements for the Coulomb potential”, Int. J. Quantum Chem. 53: 3–7.
Bautista-Moedano, M.; López Bonilla, J.; Morales, J. (2006) “Matrix elements 〈n2l2 |rk | n1l1〉 for the Coulomb interaction”, Apeiron 13(1): 34–42.
Gaftoi, V.; López Bonilla, J.; Peña, J.J. (2000) “Ladder operators for the Coulomb potential”, Indian J. Phys. B74: 171–172.
Martínez, R.P.; Romero, Y.; Núñez-Yépez, H.N.; Salas-Brito, A.L. (2007) “Algebraic approach to radial ladder operators in the hydrogen atom”, Int. J. Quantum Chem. 107: 1606–1613.