Resumen
Se propone un modelo en ecuaciones diferenciales ordinarias para describir la dinámica de infección por VIH en una población de células T CD4 susceptibles a la infección y considerando una tasa de infección no lineal densodependiente. Se analiza la estabilidad del modelo con base en el número básico de reproducción, lo que permite determinar resultados de estabilidad y un umbral de control mediante la reducción de la tasa máxima de infección. Luego se formula un problema de control óptimo para establecer funciones óptimas de tratamiento mediante inhibidores de transcriptasa inversa e inhibidores de proteasa, que minimicen la carga viral y los costos directos y/o indirectos de la administración del tratamiento. Se estudian los casos en que la efectividad del tratamiento es nula y plena, y para el caso de efectividad imperfecta del tratamiento se acude al Principio del Máximo de Pontryagin. Se presentan simulaciones numéricas del modelo sin tratamiento y de los diferentes escenarios con tratamiento.
Citas
Adams, B.M.; Banks, H.T.; Davidian, M.; Kwon, H.D.; Tran, H.T.; Wynne, S.N.; Rosenberg, E.S. (2005) “HIV dynamics: modeling, data analysis, and optimal treatment protocols”, Journal of Computational and Applied Mathematics 184(1): 10–49.
AIDS (2011) Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents.
Arhel, N. (2010) “Revisiting HIV-1 uncoating”, Retrovirology 7(96).
Arnold, E.; Sarafianos, S.G. (2008) “Molecular biology: An HIV secret uncovered”, Nature 453(7192): 169–170.
Bairagi, N.; Adak, D. (2014) “Global analysis of HIV-1 dynamics with Hill type infection rate and intracellular delay”, Applied Mathematical Modelling 38(21–22): 5047–5066.
Bandyopadhyay, M.; Chattopadhyay, J. (2005) “Ratio-dependent predator-prey model: effect of environmental fluctuation and stability”, Nonlinearity 18(2): 913–936.
Campos-Delgado, D. U.; Palacios, E. (2005) “Análisis y control de la dinámica del VIH-1”, Universidad Autónoma de San Luis Potosí, Facultad de Ciencias.
Cazelles, B.; Chau, N.P. (1997) “Using the Kalman filter and dynamic models to assess the changing HIV/AIDS epidemic”, Mathematical Bio- sciences 140(2): 131–154.
Chao, D. L.; Davenport, M. P.; Forrest, S.; Perelson, A. S. (2004) “A stochastic model of cytotoxic T cell responses”, Journal of Theoretical Biology 228(2): 227–240.
Cleary, S. M.; Mooney, G. H.; McIntyre, D. E. (2011) “Claims on health care: a decision-making framework for equity, with application to treatment for HIV/AIDS in South Africa”, Health Policy and Planning 26(6): 464–470.
Culshaw, R. V.; Ruan, S.; Spiteri, R. J. (2004) “Optimal HIV treatment by maximising immune response”, Journal of Mathematical Biology 48(5): 545–562.
Dalal, N.; Greenhalgh, D.; Mao, X. (2008) “A stochastic model for internal HIV dynamics”, Journal of Mathematical Analysis and Applications 341(2): 1084–1101.
Del Valle, S.; Evangelista, A.M.; Velasco, M.C.; Kribs-Zaleta, C.M.; Schmitz, S.F.H. (2004) “Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity”, Mathematical Biosciences 187(2): 111–133.
Dinga, A.; Wub, H. (1999) “Relationships between antiviral treatment effects and biphasic viral decay rates in modeling HIV dynamics, Mathematical Biosciences 160(1): 63–82.
Fleming, W.H.; Rishel, R. W. (1975) Deterministic and Stochastic Optimal Control. Springer-Verlag, New York.
Gómez, M. (2008) “Comparación de tres estrategias de tamizaje para la prevención de la infección perinatal por VIH en Colombia: análisis de decisiones”, Revista Panamericana de Salud Publica 24(4): 256–264.
Gray, R.H.; Li, X.; Wawer, M.J.; Gange, S.J.; Serwadda, D.; Sewankambo, N.K.; Moore, R.; Wabwire-Mangen, F.; Lutalo, T.; Quinn, T.C. (2003) “Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission; Rakai, Uganda”, AIDS 17(13): 1941–1951.
Guo, H.; Li, M.Y. (2008) “Global dynamics of a staged-progression model with amelioration for infectious diseases”, Journal of Biological Dynamics 2(2): 154–168.
Haacker, M. (2002) Modeling the Macroeconomic Impact of HIV/AIDS. IMF Working Paper.
Hackbusch, W. (1978) “A numerical method for solving parabolic equations with opposite orientations”, Computing 20(3): 229–240.
Hosseini, I.; Gabhann, F. (2012) “Multi-scale modeling of HIV infection in vitro and APOBEC3G-based anti-retroviral therapy”, PLoS Computational Biology 8(2): 1–17.
Huang, G.; Ma, W.; Takeuchi, Y. (2009) “Global properties for virus dynamics model with Beddington-DeAngelis functional response”, Applied Mathematics Letters 22(11): 1690–1693.
Jiang, D.; Liu, Q.; Shi, N.; Hayat, T.; Alsaedi, A.; Xia, P. (2017) “Dynamics of a stochastic HIV-1 infection model with logistic growth”, Physica A: Statistical Mechanics and its Applications 469: 706–717.
Joly, M.; Pinto, J. M. (2006) “Role of mathematical modeling on the optimal control of HIV-1 pathogenesis”, AIChE Journal 52(3): 856–884.
Joshi, H. R. (2002) “Optimal control of an HIV immunology model”, Optimal Control Applications and Methods 23(4): 199–213.
Kamina, A.; Makuch, R. W.; Zhao, H. (2001) “A stochastic modeling of early HIV-1 population dynamics”, Mathematical Biosciences 170(2): 187–198.
Khalil, H.K. (1996). Nonínear Systems. Prentice-Hall, New Jersey.
Kirschner, D. (1996) “Using mathematics to understand HIV immune dynamics”, Notices of the AMS 43(2): 191–202.
Kirschner, D.; Webb, G.F. (1996) “A model for treatment strategy in the chemotherapy of AIDS”, Bulletin of Mathematical Biology 58(2): 367–390.
Kirschner, D.E.; Webb, G.F. (1998) “Immunotherapy of HIV-1 infection”, Journal of Biological Systems 6(1): 71–83.
Kirschner, D.E.; Chang, S.T.; Riggs, T.W.; Perry, N.; Linderman, J.J. (2007) “Toward a multiscale model of antigen presentation in immunity”, Immunological Reviews 216(1): 93–118.
Kouyos, R.D.; Althaus, C.L.; Bonhoeffer, S. (2006) “Stochastic or deterministic: what is the effective population size of HIV-1?”, Trends in Microbiology 14(12): 507–511.
La Salle, J.P. (1976) The Stability of Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia.
Ladino, L.M.; Valverde, J.C. (2012) “Population dynamics of a two-stage species with recruitment”, Mathematical Methods in the Applied Sciences 36(6): 722–729.
Lenhart, S.; Workman, J.T. (2007) Optimal Control Applied to Biological Models. Chapman & Hall/CRC, United States.
Li, D.; Ma, W. (2007) “Asymptotic properties of a HIV-1 infection model with time delay”, Journal of Mathematical Analysis and Applications 335(1): 683–691.
Mubayi, A.; Zaleta, C.K.; Martcheva, M.; Castillo-Chávez, C. (2010) “A cost-based comparison of quarantine strategies for new emerging diseases”, Mathematical Biosciences and Engineering 7(3): 687–717.
Nelson, P.W.; Murray, J D.; Perelson, A.S. (2000) “A model of HIV-1 pathogenesis that includes an intracellular delay”, Mathematical Biosciences 163(2): 201–215.
Núñez, C.A.; Aguilar, S.; Fernández, V.H. (2001) Exclusión Social y VIH-SIDA en Guatemala. Sistema de Naciones Unidas, Guatemala.
Oliva-Moreno, J.; López-Bastida, J.; Serrano-Aguilar, P.; Perestelo-Pérez, L. (2010) “Determinants of health care costs of HIV-positive patients in the Canary Islands, Spain”, The European Journal of Health Economics
(4): 405–412.
Orellana, J.M. (2011) “Optimal drug scheduling for HIV therapy efficiency improvement”, Biomedical Signal Processing and Control 6(4): 379–386.
Perelson, A.S. (2002) “Modelling viral and immune system dynamics”, Nature Reviews Immunology 2(1): 28–36.
Perelson, A.S.; Kirschner, D.E.; De Boer, R. (1993) “Dynamics of HIV infection of CD4+ T cells”, Mathematical Biosciences 114(1): 81–125.
Perelson, A.S.; Nelson, P.W. (1999) “Mathematical analysis of HIV-1 dynamics in vivo”, SIAM Review 41(1): 3–44.
Raffi, F.; Rachlis, A.; Stellbrink, H.J.; Hardy, W.D.; Torti, C.; Orkin, C.; Bloch, M.; Podzamczer, D.; Pokrovsky, V.; Pulido, F.; Almond, S.; Margolis, D.; Brennan, C.; Min, S. (2013) “Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study”, The Lancet 381(9868): 735–743.
Revilla, T.; García-Ramos, G. (2003) “Fighting a virus with a virus: a dynamic model for HIV-1 therapy”, Mathematical Biosciences 185(2): 191–203.
Ribeiro, R. M.; Bonhoeffer, S. (1999) “A stochastic model for primary HIV infection: optimal timing of therapy”, AIDS 13(3): 351–357.
Schmitz, H. (2000) “Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity”, Mathematical Bio- sciences 167(1): 1–18.
Shim, H.; Han, S.J.; Chung, C.C.; Nam, S.W.; Seo, J.H. (2003) “Optimal scheduling of drug treatment for HIV infection: continuous dose control and receding horizon control”, International Journal of Control, Automation and Systems 1(3): 282–288.
Srivastava, P.K.; Chandra, P. (2010) “Modeling the dynamics of HIV and CD4+ T cells during primary infection”, Nonlinear Analysis: Real World Applications 11(2): 612–618.
Stengel, R.F. (2008) “Mutation and control of the human immunodeficiency virus”, Mathematical Biosciences 213(2): 93–102.
Tan, W.Y.; Byers, R.H. (1993) “A stochastic model of the HIV epidemic and the HIV infection distribution in a homosexual population”, Mathematical Biosciences 113(1): 115–143.
Taylor, J.M.; Cumberland, W.G.; Sy, J.P. (1994) “A stochastic model for analysis of longitudinal AIDS data”, Journal of the American Statistical Association 89(427): 727–736.
Toro, H.D.; Caicedo, A.G.; Bichara, D.; Lee, S. (2014) “Role of Active and Inactive Cytotoxic Immune Response in Human Immunodeficiency Virus Dynamics”, Osong Public Health and Research Perspectives 5(1): 3–8.
Toro, H.D.; Londoño, C.A.; Trujillo, C.A. (2014) “Modelo de simulación para la infección por VIH y su interacción con la respuesta inmune citotóxica”, Revista de Salud Pública 16(1): 114–127.
Toro-Zapata, H.D.; Roa-Vásquez, E.; Mesa-Mazo, M.J. (2017) “Modelo estocástico para la infección con VIH de las células T CD4+ del sistema inmune”, Revista de Matemática: Teoría y Aplicaciones 24(2): 287–313.
Trujillo-Salazar, C.A.; Toro-Zapata, H.D. (2014) “Análisis teórico de la transmisión y el control del VIH/SIDA en un centro de reclusión”, in: D. Tarzia (Ed.) VII Italian-Latin American Conference on Industrial and Applied Mathematics, Universidad Austral, Facultad de Ciencias Empresariales, Argentina: 17–26.
Trujillo-Salazar, C.A.; Toro-Zapata, H.D. (2015) “Simulation model for AIDS dynamics and optimal control through antiviral treatment”, in: G. Tost & O. Vasilieva (Eds.) Analysis, Modelling, Optimization, and Numerical Techniques, ICAMI, San Andres Island, Colombia: 257–270.
Wandeler, G.; Keiser, O.; Hirschel, B.; Günthard, H.F.; Bernasconi, E.; Battegay, M.; Clerc, O.; Vernazza, P.L.; Furrer, H. (2011) “A comparison of initial antiretroviral therapy in the Swiss HIV Cohort Study and the recommendations of the International AIDS Society-USA”, PLoS One 6(12): 1–8.
Wang, J.; Guo, M.; Liu, X.; Zhao, Z. (2016) “Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay”, Applied Mathematics and Computation 291: 149–161.
Wang, L. (2011) “Global mathematical analysis of an HIV-1 infection model with holling Type-II incidence”, Communications in Applied Analysis 15(1): 47 56.
Zaric, G.S.; Bayoumi, A.M.; Brandeau, M.L.; Owens, D.K. (2008) “The cost-effectiveness of counseling strategies to improve adherence to highly active antiretroviral therapy among men who have sex with men”, Medical Decision Making 28(3): 359–376.
##plugins.facebook.comentarios##
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2018 Revista de Matemática: Teoría y Aplicaciones