Resumen

El análisis estadístico de tiempos de vida o tiempos de respuesta se ha convertido en un tópico de interés considerable para matemáticos y estadísticos en áreas tales como ingeniería, medicina y ciencias ambientales. Los métodos de máxima verosimilitud han sido una de las herramientas más importantes para resolver problemas desde análisis de tiempos de vida hasta análisis de datos de confiabilidad. Tomando problemas típicos de varias disciplinas y usando esos métodos, se pretende motivar a científicos, ingenieros y estudiantes al análisis de datos censurados. Se muestra un ejemplo sobre un ensayo clínico, el cual fue llevado acabo para determinar si un tratamiento hormonal es benéfico para las mujeres con cáncer [3]. Por otro lado, un ejemplo sobre análisis de degradación es presentado para estimar los parámetros de un modelo para datos de tamaño de grieta por fatiga para una aleación [5]. Finalmente, se enfatiza en un procedimiento para probar las medianas en un contexto de dos muestras lognormales que contienen dos contaminantes [12]. Se realizan comparaciones entre la metodología lognormal que se presenta aquí y los métodos no paramétricos propuestos por Millard [6]. SPLIDA [10] y SPLUS [11] son usados para implementar la metodología en cada caso.

Palabras clave: Datos censurados, distribución exponencial, distribución lognormal, máxima verosimilitud