Resumen

La propagación de enfermedades infecciosas y su impacto en individuos juega un gran rol en la dinámica de enfermedades, y es importante incorporar heterogeneidad en la población en los esfuerzos por estudiar enfermedades. De manera simplística pero ilustrativa, se examinan interacciones entre una población urbana y una rural en la dinámica de la propagación de una enfermedad. Utilizando un sistema compartimental de dinámicas entre susceptibles–infectados–susceptibles (SIS) con cierto nivel de inmunidad, se formula un modelo que permite reinfecciones no lineales. Se investiga los efectos de movimiento de poblaciones en un escenario simple: un caso con dos poblaciones, que permite modelar movimiento entre un área urbana y otra rural. Con el fin de estudiar la dinámica del sistema, se calcula el número básico reproductivo para cada comunidad (rural y urbana). Se calculan también puntos de equilibrio, la estabilidad local del estado libre de enfermedad, y se identifican condiciones para la existencia de estados de equilibrio endémicos. Del análisis y experimentos computacionales, se ilustra que el movimiento en la población juega un rol importante en la dinámica del sistema. En algunos casos, puede ser beneficioso, pues incrementa la región de estabilidad del punto de equilibrio del estado libre de infección.

Palabras clave: sistemas dinámicos, dinámica de poblaciones, modelado matemático, contagios biológicos, movimiento de poblaciones