Resumen

Se propone un modelo epidémico de ecuaciones diferenciales con retraso del tipo SIQR (por sus siglas en inglés) (Susceptible-Infeccioso-En cuarentena-Recuperado), con períodos arbitrariamente distribuidos en la clase de aislamiento o cuarentena. Se analizan sus características matemáticas esenciales. Además, se identifican las condiciones que respaldan la existencia de soluciones periódicas a través de la bifurcación de Hopf. Los tiempos de espera no exponenciales en la clase de cuarentena/aislamiento conducen no solo a oscilaciones sino que también pueden soportar cambios de estabilidad.

Palabras clave: ecuación diferencial con retraso, ecuación integro-diferencial, modelo epidémico, cuarentena, cambio de estabilidad, oscilaciones, estructura por etapas