Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Dinámica de la transmisión de dengue en Costa Rica: el rol de las hospitalizaciones
PDF (English)
PS (English)
DVI (English)

Palabras clave

dengue fever
mathematical modeling
epidemic model
vectorborne diseases
dengue
modelo matemático
modelo epidémico
enfermedades vectoriales

Cómo citar

Sánchez, F., Arroyo-Esquivel, J., & Vásquez, P. (2019). Dinámica de la transmisión de dengue en Costa Rica: el rol de las hospitalizaciones. Revista De Matemática: Teoría Y Aplicaciones, 27(1), 241–266. https://doi.org/10.15517/rmta.v27i1.39977

Resumen

Durante décadas, el virus del dengue ha causado grandes problemas a los funcionarios de salud pública en países tropicales y subtropicales de todo el mundo. Construimos un modelo compartimental que incluye el papel de las personas hospitalizadas en la dinámica de transmisión del dengue en Costa Rica. Calculamos el número básico reproductivo, R0, así como un análisis de sensibilidad en los parámetros de R0 y discutimos la importancia de las políticas de salud pública. Se establece la estabilidad local y global del estado libre de enfermedad. Se hacen simulaciones numéricas bajo escenarios específicos para determinar estrategias óptimas de prevención y control.

https://doi.org/10.15517/rmta.v27i1.39977
PDF (English)
PS (English)
DVI (English)

Citas

E.G. Acosta, A. Kumar, R. Bartenschlager, Revisiting dengue virus– host cell interaction: new insights into molecular and cellular virology, Advances in Virus Research 88(2014), 1–109. doi: 10.1016/ B978-0-12-800098-4.00001-5

M. Aguiar, B. Kooi, N. Stollenwerk, Epidemiology of dengue fever: a model with temporary cross-immunity and possible secondary infection shows bifurcations and chaotic behaviour in wide parameter regions, Math. Model. Nat. Phenom 3(2008), no.4, 48–70.doi: 10.1051/mmnp: 2008070

N. Al-Muhandis, P.R. Hunter, The value of educational messages embedded in a community-based approach to combat dengue fever: a systematic review and meta regression analysis, PLoS Negl Trop Dis 5(2011), 1–9. doi: 10.1371/journal.pntd.0001278

S. Bhatt, P. Gething, O. Brady, J. Messina, A. Farlow, C. Moyes, J. Drake, J. Brownstein, A. Hoen, O. Sankoh, M. Myers, D. George, T. Jaenisch, G. Wint, C. Simmons, T. Scott, J. Farrar, S. Hay, The global distribution and burden of dengue, Nature 5(2013), e1760, 504–507. doi: 10.1038/ nature12060

O.J. Brady, P.W. Gething, S. Bhatt, J.P. Messina, J.S. Brownstein, A.G. Hoen, C. Moyes, A.W. Farlow, T.W. Scott, S.I. Hay, Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLoS Negl Trop Dis 6(2012), 115–123. doi: 10.1371/journal. pntd.0001760

Caja Costarricense de Seguro Social, Guía para la organización de la atención y manejo de los pacientes con dengue y dengue grave, 2013. http://www.binasss.sa.cr/protocolos/dengue.pdf

Caja Costarricense de Seguro Social, Egresos hospitalarios debidos a dengue, San José, Costa Rica, 2018.

L.B. Carrington, C.P. Simmons, Human to mosquito transmission of dengue viruses, Front. Immunology 5(2014), 1–8. doi: 10.3389/ fimmu.2014.00290

C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of R0 and its role on global stability, in: C. Castillo-Chavez, S. Blower, P. van den Driessche, Krischner & A.-A.Yakubu(Eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases. Models, Methods and Theory. The IMA Volumes in Mathematics and its Applications, Springer,New York, 2002, pp. 229–250. doi: 10.1007/978-1-4613-0065-6

M.C. Castro, M.E. Wilson, D.E. Bloom, Disease and economic burdens of dengue, Lancet Infect Dis 17(2017), no. 3, 70–78. doi: 10.1016/ S1473-3099(16)30545-X

N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70(2008), 1272–1296. doi: 10.1007/ s11538-008-9299-0

O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol 28(1990),no.4,365– 382. doi: 10.1007/BF00178324

V. Duong, L. Lambrechts, R.E. Paul, S. Ly, R. Srey Lay, K.C .Long, R. Huy, A. Tarantola, T.W. Scott, A. Sakuntabhai, P. Buchy, Asymptomatic humans transmit dengue virus to mosquitoes, Proc. Natl. Acad. Sci 112(2015), no. 47, 14688–14693. doi: 10.1073/pnas.1508114112

L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol. 38(1999), no. 3, 220–240. doi: 10.1007/ s002850050147

Z. Feng, J.X. Velasco-Hernández, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35(1997), no. 5, 523–544. doi: 10.1007/s002850050064

D.J. Gubler, Dengue and Dengue Hemorrhagic Fever, Clin. Microbiol. Rev.11(1998), no. 3, 480–496. doi: 10.1128/CMR.11.3.480

D.J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol. 10(2002),no.2,100–103.doi: 10.1016/S0966-842X(01)02288-0

D.J. Gubler, G.G. Clark, Dengue/dengue hemorrhagic fever: the emergence of a global health problem, Emerging Infect. Dis. 1(1995), no. 2, 55–57. doi: 10.3201/eid0102.952004

D.J. Gubler, W. Suharyono, R. Tan, M. Abidin, A. Sie, Viremia in patients with naturally acquired dengue infection, Bull. World Health Organization, 59(1995), no. 4, 623–630.

L.C. Harrington, T.W. Scott, K. Lerdthusnee, R.C. Coleman, A. Costero, G.G. Clark, J.J. Jones, S. Kitthawee, P. Kittayapong, J.D. Edman, Dispersal of the dengue vector Aedes aegypti within and between rural communities, Am. J. Trop. Med. Hyg. 72(2005), no. 2, 209–220. doi: 10.4269/ ajtmh.2005.72.209

C.Jansen,N.W.Beebe,The dengue vector Aedes aegypti: what comes next, Microbes Infect. 12(2010), no. 4, 272–279. doi: 10.1016/j.micinf. 2009.12.011

M.J.Keeling,P.Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, New Jersey, 2008. doi: 10. 1111/j.1541-0420.2008.01082_7.x

L. Kittigul, P. Pitakarnjanakul, D. Sujirarat, K. Siripanichgon, The differences of clinical manifestations and laboratory findings in children and adults with dengue virus infection, J. Clin. Virol. 39(2007), no.2, 76–81. doi: 10.1016/j.jcv.2007.04.006

V. Liles, L.S. Pangilinan, M.G Daroy, M.T. Dimamay, R.S. Reyes, M.K. Bulusan, ..., T. Hattori, Evaluation of a rapid diagnostic test for detection of dengue infection using a single-tag hybridization chromatographic printed array strip format, Eur. J. Clin. Microbiol. Infect. Dis. 38(2019), no. 3, 515–521. doi: 10.1007/s10096-018-03453-3

L.P. Lounibos, L.D. Kramer Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus, J. Infect. Dis., 214(2017), no. 5, S453–S458. doi: 10.1093/infdis/jiw285

R. Luo, N. Fongwen, C. Kelly-Cirino, E. Harris, A. Wilder-Smith, R.W. Peeling, Rapid diagnostic tests for determining dengue serostatus: a systematic review and key informant interviews, Clin. Microbiol. Infect. 25(2009), no. 6, 659–666. doi: 10.1016/j.cmi.2019.01.002

T.H. Mallhi, A.H. Khan, A. Sarriff, A.Z. Adnan, Y.H. Khan, Patients related diagnostic delay in dengue: an important cause of morbidity and mortality, Clinical Epidemiology and Global Health 4(2016), no. 4, 200– 201. doi: 10.1016/j.cegh.2016.08.002

C.A.Manore,K.S.Hickmann,S.Xu,H.J.Wearing,J.M.Hyman,Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theor. Biol. 356(2014), 174–191. doi: 10. 1016/j.jtbi.2014.04.033

Ministerio de Salud, Lineamientos nacionales para el control del dengue, 2010. Available from: http://www.solucionesss.com/ descargas/G-Leyes/LINEAMIENTOS_NACIONALES_PARA_ EL_CONTROL_DEL_DENGUE.pdf

Ministerio de Salud, Análisis de situación de salud, 2018. Available from: http:/www.ministeriodesalud. go.cr/index.php/vigilancia-de-la-salud/ analisis-de-situacion-de-salud

A.Morice,R.Marín,M.L.Ávila-Agüero,El dengue en Costa Rica: evolución histórica, situación actual y desafíos, in: La salud pública en Costa Rica. Estado actual, retos y perspectivas. San José, Universidad de Costa Rica, San José, 2010, pp. 197–217.

N.A.E. Murray, M.B. Quam, A. Wilder-Smith, Epidemiology of dengue: past,present and future prospects, Clin Epidemiol 5(2013), no.1, 299–309. doi: 10.2147/CLEP.S34440

N. Nuraini, E. Soewono, K.A. Sidarto, Mathematical model of dengue disease transmission with severe DHF compartment, Bull. Malays. Math. Sci. Soc.30(2007), no. 2, 143–157.

M. OhAinle, A. Balmaseda, A.R. Macalalad, Y. Tellez, M.C. Zody, S. Saborío, A. Nuñez, N.J. Lennon, B.W. Birren, A. Gordon, M.R. Henn, E. Harris, Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity, Sci Transl Med. 3(2011), no.114, 114–128.doi: 10.1126/scitranslmed.3003084

W.J. Parks, L.S. Lloyd, M.B. Nathan, E. Hosein, A. Odugleh, G.G. Clark, D.J. Gubler, C. Prasittisuk, K. Palmer, J. San Martin, S.R. Silversen, Z. Dawkins, E. Renganathan, International experiences in social mobilization and communication for dengue prevention and control, Dengue Bull. 28(2004), 1–7. https://apps.who.int/iris/handle/10665/ 163969

A.Ponlawat,L.C.Harrington,BloodfeedingpatternsofAedesaegyptiand Aedes albopictus in Thailand, J. Med. Entomol. 42(2005), no. 5, 844–849. doi: 10.1093/jmedent/42.5.844

N.G Reich, S. Shrestha, A.A. King, P. Rohani, J. Lessler, S. Kalayanarooj, E. Kyu Yoon, R.V. Gibbons, D.S. Burke, D. Cummings, Interactions between serotypes of dengue highlight epidemiological impact of cross immunity, JR Soc Interface 10(2013),1–9.doi: 10.1098/rsif.2013. 0414

G. Rezza, Aedes albopictus and the reemergence of dengue, BMC Public Health 12(2012), 72–75. doi: 10.1186/1471-2458-12-72

G.A. Roth, D. Abate, K.H. Abate, S.M. Abay, C. Abbafati, et al., Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017, The Lancet 392(2018), 1736–1788. doi: 10.1016/S0140-6736(18)32203-7

S. Runge-Ranzinger, A. Kroeger, P. Olliaro, P.J. McCall, G. Sánchez Tejeda, L.S.Lloyd, L.H.R. Bowman, O. Horstick, G. Coelho, Dengue contingency planning: from research to policy and practice, PLoS Negl Trop Dis 10(2016), 1–16. doi: 10.1371/journal.pntd.0004916

F. Sanchez, L. Barboza, D. Burton, A. Cintrón-Arias, Comparative analysis of dengue versus chikungunya outbreaks in Costa Rica, Journal Ricerche di Matematica 67(2018), 163–174. doi: 10.1007/ s11587-018-0362-3

F. Sanchez, M. Engman, L. Harrington, C. Castillo-Chavez, Models for dengue transmission and control, in: A. Gumel, C. Castillo-Chavez, D.P. Clemence, & R.E. Mickens (Eds.) Mathematical studies on human disease dynamics. Emerging paradigms and challenges (Snowbird, Utah, 2005), Contemp. Math. 410(2006), 311–326. doi: 10.1090/conm/ 410/07734

F. Sanchez, D. Murillo, C. Castillo-Chavez, Change in host behavior and its impact on the transmission dynamics of dengue, in: R.P. Mondani (Ed.) BIOMAT 2011, World Scientific, Singapore, 2012, pp. 191–203. doi: 10. 1142/9789814397711_0013

T.W. Scott, W. Takken, Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission, Trends Parasitol. 28(2012), 114–121. doi: 10.1016/j.pt.2012.01.001

C.P. Simmons, J.J. Farrar, N. van Vinh Chau, B. Willis, Dengue, N. Engl. J. Med. 12(2012), 1423–1432. doi: 10.1056/NEJMra1110265

C. Soto-Garita, T. Somogyi, A. Vicente-Santos, Molecular Characterization of Two Major Dengue Outbreaks in Costa Rica, Am. J. Trop. Med. Hyg.95(2016), no. 1, 201–205. doi: 10.4269/ajtmh.15-0835

J. Spiegel, S. Bennett, L. Hattersley, M.H. Hayden, P. Kittayapong, S. Nalim, D. Nan Chee Wang, E.Z. Gutiérrez, D. Gubler, Barriers and bridges to prevention and control of dengue: the need for a social– ecological approach, EcoHealth 2(2005),no.4,273–290.doi: 10.1007/ s10393-005-8388-x

M.E. Toledo, V. Vanlerberghe, D. Perez, P. Lefevre, E. Ceballos, D. Bandera, A. Baly Gil, P. Van der Stuyft, Achieving sustainability of community based dengue control in Santiago de Cuba, Soc Sci Med 64(2007), no. 4, 976–988. doi: 10.1016/j.socscimed.2006.10.033

K.S. Vannice, A. Wilder-Smith, A. Barrett, K. Carrijo, M. Cavaleri, A. Silva, A.P. Durbin, T. Endy, E. Harris, B.L. Innis, L.C. Katzelnick, P.G. Smith, W. Sun, S.J.Thomas, J. Hombacha, Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines, Vaccine 36(2018), no. 24, 3411–3417. doi: 10.1016/ j.vaccine.2018.02.062

O. Wichmann, K. Vannice, E. Asturias, E.J. de Albuquerque Luna, I. Longini, A.Lopez, P. G.Smith, H. Tissera, I.K Yoon, J. Hombacha, Liveattenuated tetravalent dengue vaccines: the needs and challenges of postlicensure evaluation of vaccine safety and effectiveness, Vaccine 35(2017), no. 42, 5535–5542. doi: 10.1016/j.vaccine.2017.08.066

A. Wilder-Smith, E. Schwartz, Dengue in travelers, N. Engl. J. Med 353(2005), 924–932. doi: 10.1056/NEJMra041927

World Health Organization, Dengue: guidelines for diagnosis, treatment, prevention and control, 2009. Available from: https://www.who. int/tdr/publications/documents/dengue-diagnosis. pdf

World Health Organization, Handbook for clinical management of dengue, 2012. Available from: https://www.who.int/denguecontrol/ 9789241504713/en/

World Health Organization, Handbook for integrated vector management, 2012. Available from: https://apps.who.int/iris/ bitstream/handle/10665/44768/9789241502801_eng. pdf?sequence=1

World Health Organization, Dengue Bulletin, Vol. 39, 2016. Available from: https://apps.who.int/iris/handle/10665/255696

C. Xavier-Carvalho, C.C. Cardoso, F. de Souza, A.G. Pacheco, M. Ozório, Host genetics and dengue fever, Infect. Genet. Evol. 56(2017), 99–110. doi: 10.1016/j.meegid.2017.11.009

C.F. Yung, K.S Lee, T.L. Thein, L.K. Tan, V.C. Gan, J.G. Wong, D. Lye, L.C. Ng, Y. Leo, Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore, Am. J. Trop. Med. Hyg. 92(2015), 999–1005. doi: 10.4269/ajtmh. 14-0628

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.