Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Clasificación asociativa con búsqueda Tabú multiobjetivo
PDF (English)
PS (English)
DVI (English)

Palabras clave

combinatorial data analysis
associative classification
tabu search
multiobjective optimization
análisis de datos combinatorio
clasificación asociativa
búsqueda tabú
optimización multiobjectivo

Cómo citar

Beausoleil, R. P. (2020). Clasificación asociativa con búsqueda Tabú multiobjetivo. Revista De Matemática: Teoría Y Aplicaciones, 27(2), 333–354. https://doi.org/10.15517/rmta.v27i2.42438

Resumen

Este artículo presenta una aplicación de Búsqueda Tabu Multiobjetivo a la minería de reglas de asociación. Centramos nuestra atención específicamente en la minería de reglas de clasificación, frecuentemente llamada clasificación asociativa, donde la parte consecuente es una clase. Nuestro enfoque se basa en la búsqueda de un conjunto de reglas manipulado como un individuo para la clasificación. Un algoritmo de Búsqueda Tabu es utilizado para encontrar conjuntos de reglas Pareto-Óptimo con respecto a algunos criterios tales como exactitud y complejidad. Aplicamos el siguiente algoritmo de A priori para la extracción de las reglas de asociación del problema en cuestión y entonces una búsqueda Tabu multiobjetivo es realizada para seleccionar subconjuntos de reglas. Reportamos experimentos donde es examinado el efecto de la selección multiobjetivo para algunos conjuntos de datos bien conocidos de la base de datos del almacén de máquinas de aprendizaje de la UCI.

https://doi.org/10.15517/rmta.v27i2.42438
PDF (English)
PS (English)
DVI (English)

Citas

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo, Fast discovery of association rules, in: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.) Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park CA. 17(1996), No.3, 307–328.

R.J. Bayardo, R. Agrawal, Mining the most interesting rules, Proc. of 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (1999) 145–154. Doi: 10.1145/312129.312219

R.P. Beausoleil, R. Montejo, A study with neighborhood searches to deal with multiobjective unconstrained permutation problems, Journal of Industrial and Management Optimization, 5,(2009), No. 2, 193–216. Doi: 10. 3934/jimo.2009.5.193

R.P. Beausoleil, MOSS-II: Tabu/Scatter Search for nonlinear multiobjective optimization, in: Z. Michalewicz & P. Siarry (Eds.) Advances in Metaheuristics for Hard Optimization, Natural Computing Series, Springer, Berlin Heidelberg, 2007, pp. 39–67. Doi: 10.1007/978-3-540-72960-0_3

C. Blake, E. Keogh, C.J. Merz, UCI Repository of machine learning repository, University of California, Irvine (1998). Available at http://archive.ics.uci.edu/ml/index.php

F. Glover, Future paths for integer programming and links to artificial intelligence, Computers and Ops. Res. 13(1986), no. 5, 533–549. Doi: 10.1016/0305-0548(86)90048-1.

B. de la Iglesia, M.S. Philpott, A.J. Bagnall, V.J. Rayward-Smith, Data mining rules using multi-objective evolutionary algorithm, Proc. of 2003, Congress on Evolutionary Computation, Canberrra, Australia, 3, 2003, pp. 1552–1559. Doi:10.1109/CEC.2003.1299857

B. de la Iglesia, A. Reynolds, V.J. Rayward-Smith, Developments on a multi-objective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds) Evolutionary Multi-Criterion Optimization, Lecture Notes on Computer Science 3410, Springer, Berlin, 2005, pp. 826–840. Doi:10.1007/978-3-540-31880-4_57

B. de la Iglesia, G. Richards, M.S. Philpott, V.J. Rayward-Smith, The application and effectiveness of a multi objective metaheuristic algorithm for partial classification, European Journal of Operational Research 169(2006), no. 3, 898–917. Doi: 10.1016/j.ejor.2004.08.025

H. Ishibuchi, S. Namba, Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems, in: X. Yao et al. (Eds.) Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 3242. Springer, Berlin, 2004, pp. 1123–1132. Doi:10.1007/978-3-540-30217-9_113

H. Ishibuchi, Y. Nojima, Accuracy-complexity tradeoff analysis by multiobjective rule selection, Proc. of ICDM 2005, Workshop on Computational Intelligence in Data Mining, 2005, pp. 39–48.

W. Li, J. Han, J. Pei, CMAR: Accurate and efficient classification based on multiple class-association rules, Proc. of 1st IEEE International Conference on Data Mining, San José CA, 2001, pp. 369–376. Doi: 10.1109/ ICDM.2001.989541.

B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule mining, Proc. 4th International Conference on Knowledge Discovery and Data Mining, 1998, pp. 80–86.

F.A. Lootsma, Scale sensitivity in the multiplicative AHP and SMART, Journal of Multi-Criteria Decision Analysis 2(1993), no. 2, 87–110. Doi:10.1002/mcda.4020020205

S. Mutter, M. Hall, E. Frank, Using classification to evaluate the output of confidence based association rule mining, in: G.I. Webb, X. Yu (Eds.) Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 3339, Springer, Berlin, 2004, pp. 538–549. Doi: 10.1007/978-3-540-30549-1_47

F. Thabtah, P. Cowling, S. Hammoud, Improving rule sorting, predictive accuracy and training time in associative classification, Expert Systems with Applications, 31(2006), no. 2, 414–426. Doi: 10.1016/j.eswa. 2005.09.039.

F. Thabtah, P. Cowling, Y. Peng, MCAR: Multi-class classification based on association rule, IEEE International Conference on Computer Systems and Applications, Cairo, Egypt, (2005), pp. 127–133. Doi: 10.1109/ AICCSA.2005.1387030

I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco CA, 2011. Doi: 10.1016/C2009-0-19715-5

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.