Resumen
El presente trabajo se continúan las investigaciones iniciadas en [CA-2]. Demostramos algunos nuevos resultados, como el teorema de estructura para funciones cuasi-periódicas n dimensionales usando la Transformada de Bochner. También, se prueba un condición de Haraux [Har] en el caso n-dimensional, y algunos teoremas topológicos similares a los teoremas de Bochner y Ascoli. Además, se responde a una conjetura del Profesor Fischer [Fis], y se estudia un teorema promedio para integrales cuasi-periódicas.
Citas
[Bo] Bohr, H. (1951) Almost Periodic Functions. Chelsea Publ. Co., New York.
[Be] Besicovitch, A.S. (1954) Almost Periodic Functions. Dover Publ. Inc., New York.
[Bl] Blot, J. (1996) “Variational methods for the almost periodic Lagrangian oscilations” Cahiers Eco et Maths CERMSEM 96, 44.
[Bo] Bochner, S. (1992) Collected Papers of Salomon Bochner, Part 2. American Mathematical Society, Providence RI.
[CA-1] Castro, E.; Arguedas,V. (1998) “Funciones *-periódicas”, in: VI Encuentro Centroamericano de Investigadores Matemáticos, Managua: 41–49.
[CA-2] Castro, E.; Arguedas,V. (2000) “Algunos aspectos teóricos de las funciones casi periódicas N -dimensionales”, Revista de Matemática: Teoría y Aplicaciones 7(1–2): 165–174.
[Co] Cooke, R. (1981) “Almost periodic functions”, American Mathematical Monthly 88(7): 515–525.
[Cor] Corduneanu, C. (1989) Almost Periodic Functions. Chelsea Publ. Co., New York.
[Fi] Fink, A.M. (1977) Almost Periodic Differential Equations. Lecture Notes in Mathematics 377, Springer-Verlag, New York.
[Fis] Fischer, A. (1996) “Structure of Fourier exponents of almost periodic functions and periodicity of almost periodic functions”, Mathematica Bohemica 3: 249–262.
[Har] Haraux, A.A. (1987) “A simple almost-periodicity criterion and applications”, Journal of Differential Equations 66: 51–61.
[Mu] Muntean, I. (1990) Analiza Functionala: Capitole Speciale. Universitatea Babes-Bolyai, Cluj-Napoca.