Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Distribuciones de codimension 1 en hipersuperficies tridimensionales
PDF (English)

Palabras clave

Distribuciones holomorfas
Haces estables
Espacios de moduli
Singularidades aisladas
Holomorphic distributions
Stable sheaves
Moduli spaces
Isolated singularities

Cómo citar

Jardim, M., & Santiago, D. (2023). Distribuciones de codimension 1 en hipersuperficies tridimensionales. Revista De Matemática: Teoría Y Aplicaciones, 30(1), 25–69. https://doi.org/10.15517/rmta.v30i1.50518

Resumen

Mostramos que las distribuciones de codimensión 1 con a lo más singularidades aisladas en hipersuperficies Xd ⊂ P4 de dimensión 3 y grado d proporcionan ejemplos interesantes de haces reflexivos estables de rango 2. Cuando d ≤ 5, estos haces se pueden considerar como puntos suaves dentro de una componente irreducible del espacio de moduli de los haces reflexivos estables. Nuestro segundo objetivo va en dirección inversa: partimos de una familia conocida de haces estables localmente libres y proporcionamos ejemplos de distribuciones de codimensión 1 del tipo intersección completa local en Xd.

https://doi.org/10.15517/rmta.v30i1.50518
PDF (English)

Citas

O. Calvo-Andrade, M. Correa, and M. Jardim. Codimension One Holomorphic Distributions on the Projective Three-space. International Mathematics Research Notices 2020(Oct. 2018), no. 23, 9011–9074. DOI: 10.1093/imrn/rny251.

O. Calvo-Andrade, M. Correa, and M. Jardim. Codimension one distributions and stable rank 2 reflexive sheaves on threefolds. An. Acad. Brasil. Cienc. 93(2021), no. suppl. 3, Paper No. e20190909, 14. DOI: 10.1590/0001-3765202120190909.

A. Cavalcante, M. Correa, and S. Marchesi. On holomorphic distributions on Fano threefolds. J. Pure Appl. Algebra 224(2020), no. 6, 106272, 20. DOI: 10.1016/j.jpaa.2019.106272.

D. Eisenbud and J. Harris. 3264 and all that—a second course in algebraic geometry. Cambridge University Press, Cambridge, 2016, xiv+616. DOI: 10.1017/CBO9781139062046.

D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Second. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2010, xviii+325. DOI: 10.1017/CBO9780511711985.

M. Jardim. Stable bundles on 3-fold hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 38(2007), no. 4, 649–659. DOI: 10 . 1007 / s00574 - 007 - 0067-9.

M. Maruyama. Moduli of stable sheaves. II. J. Math. Kyoto Univ. 18(1978), no. 3, 557–614. DOI: 10.1215/kjm/1250522511.

C. Okonek, M. Schneider, and H. Spindler. Vector bundles on complex projective spaces. Modern Birkhauser Classics. Birkhauser/Springer Basel AG, Basel, 2011, viii+239. DOI: 10.1007/978-3-0348-0151-5.

G. Ottaviani. Varieta proiettive de codimension piccola. Quaderni INDAM, Aracne, Rome, 1995. URL: http://web.math.unifi.it/users/ottaviani/codim/codim.pdf.

T. Peternell and J. A.Wi´sniewski. On stability of tangent bundles of Fano manifolds with b2 = 1. J. Algebraic Geom. 4(1995), no. 2, 363–384. DOI: 10.48550/arXiv.alg-geom/9306010.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 Marcos Jardim, Danilo Santiago

Descargas

Los datos de descargas todavía no están disponibles.