Nutrición Animal Tropical Journal ISSN electrónico: 2215-3527

OAI: https://revistas.ucr.ac.cr/index.php/nutrianimal/oai
Digestibility of Acacia macracantha attenuated in secondary compounds and Acacia polyphylla in rabbit diets
PDF
EPUB
HTML

Keywords

Conejos
vainas de Acacia macracantha
hojas de Acacia polyphylla
cal dolomítica
consumo
digestibilidad
compuestos secundarios
Rabbits
Acacia macracantha pods
Acacia polyphylla leaves
dolomitic lime
intake
digestibility
secondary compounds

Abstract

This study, conducted in Lara State, Venezuela, aimed to evaluate the effects of dolomitic lime treatment on Úveda pods to reduce secondary compounds (CSAs) and its impact on nutrient intake and digestibility in rabbit diets. The trial utilized iso-protein diets with varying inclusion levels of Acacia macracantha pods (Pam) and Acacia polyphylla foliage (Fap), alongside different levels of lime treatment (0.5% and 1.0%) on Pam. The experimental design was completely randomized with 5 treatments: T0 (commercial balanced feed); T1 (30.0% Cf, 2.0% vitamins and minerals (vit), 7.5% M, 45.0% Fap, and 15.5% Pam); T2 (30.0% Cf, 2.0% vit, 7.0% M, 45.0% Fap, and 16.0% Pam); T3 (30.0% Cf, 2.0% vit, 7.5% M, 30.0% Fap, and 30.5% Pam) and T4 (30.0% Cf, 2.0% vit, 7.0% M, 30.0% Fap, and 31.0% Pam). In this way, 5 repetitions per treatment: one rabbit/cage/experimental unit (Californian rabbit, 1.286 ± 0.045 kg of initial live weight). The trial lasted 12 days: 7 of habituation and 5 of collection. The study focused on evaluating the intake and digestibility of several nutrients: dry matter (DM), organic matter (OM), cell wall content (neutral detergent insoluble fiber, NDF), and crude protein (CP). These variables were examined to assess the effectiveness of different dietary treatments in rabbits. Significant differences were found regarding DM intake. The highest was for T0 (141.0 g/animal/d), followed by T3 and T4, with 84.8 g/animal/d and 85.5 g/animal/d, respectively. The digestibility of DM and NDF had the highest values in T0 (69.3% and 51.8% in that order), followed by T3 (52.0% and 39.7%). Regarding CP, the highest digestibility was for T0 (81.8%), secondly by T3 (41.3%). This allows to conclude that lime treatment did not completely neutralize the enzymatic inhibitor of protein digestibility present in Pam, being the best treatment T0, and then processed food T3 and T4. Further studies are recommended to assess long-term impacts on growth and nutrient utilization.

https://doi.org/10.15517/nat.v19i1.64049
PDF
EPUB
HTML

References

Abdu, S.B., Bako, H., Hassan, M.R., Jokthan, G.E., Yashim, S.M., Adamu, H.Y. and Abdulrashid, M. (2011). Effects of Charcoal Inclusion on the Performance of Growing Rabbits Fed Acacia (Acacia nilotica) Pod Meal Based Diet. Nigerian Journal of Animal Science, 13, 124-132.

Aller, R., Rodríguez, M. A. and Rodríguez, G. J. (2000). Normas éticas para el cuidado y utilización de los animales de experimentación. Cirugía Española, 67 (1), 10-13. https://www.elsevier.es/es-revista-cirugia-espanola-36-articulo-normaseticas-el-cuidado-utilizacion-8848 (Consulted on Sept. 9, 2020).

Analytical Software. (2007). Statistix for Windows Version 8.0. 2105 Miller Landing Rd Tallahassee, FL 32312 USA: Analytical Software.

AOAC (Association of Official Analytical Chemists). (1997). Official Methods of the Association of Official Analytical Chemists, 16th ed. Washington, DC.

Barbehenn, R.V. and Constabel, C.P. (2011). Tannins in plant–herbivore interactions. Phytochemistry, 72 (13), 1551-1565. https://doi.org/10.1016/j.phytochem.2011.01.040.

Bhat, T.K., Kannan, A., Singh, B. and Sharma, O.P. (2013). Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agricultural Research, 2, 189–206. https://doi.org/10.1007/s40003-013-0066-6

Bilbao, B., Giraldo D. and Hevia, P. (1999). Quantitative determination of nitrogen content in plant tissue by colorimetric method. Communications in Soil Science and Plant Analysis, 30 (13-14), 1997-2005. https://doi.org/10.1080/00103629909370348

Bonilla-Vivas, C. E., Delgado-Acevedo, L. A., Mora-Luna, R. E. and Herrera-Angulo, A. M. (2016). Efecto de niveles crecientes de follaje de Arachis pintoi en dietas para conejos sobre el desempeño Zootécnico en fase de crecimiento-engorde. Revista Científica, 26 (1): 41-48.

Calderón, M. (2007). Evaluación de la atenuación de compuestos polifenólicos en hojas de la especie Acacia polyphylla en los estados fenológicos de crecimiento activo y fructificación, empleando los metales Ca, Fe, K y Mg. Tesis Lic., Universidad Nacional Experimental Politécnica “Antonio José de Sucre”, Barquisimeto, Venezuela.

Carmona, J., Soriano, J., Pascual, J. y Cervera, C. (2004). The prediction of nutritive value of rabbit diets from tables of feed composition. Proceedings of the 8th World Rabbit Congress (pp. [818-823]). Puebla, México.

Champagne, E., Royo, A. A., Tremblay, J. and Raymond, P. (2020). Phytochemicals Involved in Plant Resistance to Leporids and Cervids: A Systematic Review. Journal of Chemical Ecology, 46: 84–98. https://doi.org/10.1007/s10886-019-01130-z

Cilliers, J. J. L. and Singleton, V. L. (1990). Singleton Autoxidative phenolic ring opening under alkaline conditions as a model for natural polyphenols in food. Journal of Agricultural and Food Chemistry, 38 (9): 1797-1798. 10.1021/jf00099a003

De Blas, C. and Wiseman, J. (2010). Nutrition of The Rabbit. 2nd Edition. CAB International. Cambridge, MA 02139 USA. p. 334.

De Nobrega, C. and Pérez, E. (2004). Efecto del ensilaje de hojas de Haematoxylum brasiletto y Pithecellobium dulce con una mezcla de melaza de caña y sulfato de cobre sobre la atenuación de taninos Tesis Lic., Universidad Nacional Experimental Politécnica “Antonio José de Sucre”, Barquisimeto, Venezuela.

Espejo-Díaz, M. A. and Nouel-Borges, G. E. (2014). Secondary compounds attenuation in Acacia macracantha leaves and its effect on intake, digestibility, plasma, and productive variables by incorporating them in rations for rabbits. Animal Production Science, 55 (2), 237-240. http://dx.doi.org/10.1071/AN14142

Espejo-Díaz, M. A. and Nouel-Borges, G. E. (2020). Evaluation of Acacia macracantha pods in balanced ration for growing rabbits. Agronomía Costarricense, 44 (1), 93-104. https://doi.org/10.15517/rac.v44i1.40005

FEDIAF (European Pet Food Industry Federation). (2024). Nutritional guidelines for feeding pet rabbits. https://europeanpetfood.org/wp-content/uploads/2024/11/FEDIAF-Nutritional-Guidelines-for-Feeding-Pet-Rabbits_NEW.pdf (Consulted on Jan. 17, 2025).

Fernández-Carmona, J., Blas, E., Pascual, J., Maertens, L., Gidenne, T., Xiccato, G. and García, J. (2005). Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Science, 13: 209-228.

Hagerman, A. E., Rice, M. E. and Ritchard, N. T. (1998). Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin 16 (4-8) catechin (procyanidin). Journal Agricultural Food Chemistry, 46, 2590-2595. http://dx.doi.org/10.1021/jf971097k

Hassan, Z.M., Manyelo, T.G., Selaledi, L. and Mabelebele, M. (2020). The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules, 25, 4680. https://doi.org/10.3390/molecules25204680

Jaramillo, A. H. (2019). Evaluación de dos especies arbóreas: Sauco (Sambucus nigra) y Acacia negra (Acacia decurrens) en la alimentación animal. Servicio Nacional de Aprendizaje – SENA. Impresión Partner Mercadeo y Medios Gráficos S.A.S. Cundinamarca, Colombia. p. 53.

Joly, L., Goby, J., Duprat, A., Legendre, H., Savietto, D., Gidenne, T. and Martin, G. (2018). PASTRAB: A model for simulating intake regulation and growth of rabbits raised on pastures. Animal,12 (8), 1642-1651. https://doi.org/10.1017/S1751731117002993

Kok, L. and Delgado, M. (2004). Efecto del ensilaje de vainas u hojas de la especie Acacia macracantha con la melaza y/o sulfato de cobre sobre la atenuación de polifenoles totales. Tesis Lic., Universidad Nacional Experimental Politécnica “Antonio José de Sucre”, Barquisimeto, Venezuela.

Kurman, R. (1991). Anti-nutritional factors, the potential risks of toxicity and methods to alleviate them. Legume trees and other fodder trees as protein sources for livestock. Edited by Andrew Speedy and Pierre-Luc Pugliese. Proceedings of the FAO Expert Consultation held at the Malaysian Agricultural Research and Development Institute (MARDI) in Kuala Lumpur, Malaysia, 14–18 October 1991, p: 145-160. http://www.fao.org/3/T0632E10.htm (Consulted on Sept. 9, 2020).

Kusano, R., Ogawa, S., Matsuo, Y., Tanaka, T., Yazaki, Y. and Kouno, I. (2011).

α-Amylase and lipase inhibitory activity and structural characterization of Acacia bark proantocyanidins. Journal of Natural Products, 74, 119–128.

Legendre, H., Goby, J., Duprat, A., Gidenne, T. and Martin, G. (2018). Herbage intake and growth of rabbits under different pasture type, herbage allowance and quality conditions in organic production. Animal: an international journal of animal bioscience, 13 (3), 495-501. https://doi.org/10.1017/S1751731118001775

Liu, H.W., Zhou, D., Tong, J. and Vaddella, V. (2012). Influence of chestnut tannins on welfare, carcass characteristics, meat quality, and lipid oxidation in rabbits under high ambient temperature. Meat Science, 90, 164–169. https://doi.org/10.1016/j.meatsci.2011.06.019

Makkar, H. (2000). Quantification of Tannins in Tree Foliage. A laboratory manual for the FAO/IAEA Co-ordinated Research Project on ‘Use of Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on Tanniniferous Tree Foliage’. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture Animal Production and Health Sub-Programme, Vienna, Austria, FAO/IAEA Working Document IAEA, 31 p. http://www-naweb.iaea.org/nafa/aph/public/pubd31022manual-tannin.pdf (Consulted on Sept. 9, 2020).

Makkar, H.P.S., Bluemmel, M., Borowy, N.K. and Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of Science Food Agriculture, 61, 161-165. https://doi.org/10.1002/jsfa.2740610205

Makkar, H.P.S., Dawra, R.K. and Singh, B. (1988). Determination of both tannin and protein in a tannin-protein complex. Journal Agriculture Food Chemistry, 36 (3), 523-525. https://doi.org/10.1021/jf00081a600.

Martin, G., Duprat, A., Goby, J., Theau, J., Roinsard, A., Descombes, M.P., Legendre, H. and Gidenne, T. (2016). Herbage intake regulation and growth of rabbits raised on grasslands: back to basics and looking forward. Animal, 10, 1609-18. https://doi.org/10.1017/S1751731116000598

Ngwa, A., Nsahlai, T. I. V. and Bonsi, M. L. K. (2000). The potential of legume pods as supplements to low quality roughages. Short paper and poster abstracts: 38th Congress of the South African Society of Animal Science.

Nouel, G. and Rincón, J. (2005). Potencial forrajero de especies arbóreas en el bosque seco tropical. Manual de Ganadería Doble Propósito. Ediciones Astro Data SA. Maracaibo. Venezuela.

Nouel-Borges, G. E. (2015). Leguminosas Tropicales del Semiárido y Alternativas de Uso en Alimentación de Herbívoros. Editorial Académica Española. Lara, Venezuela. p. 124.

NRC (National Research Council). (1977). Nutrient Requirements of Rabbits: Second Revised Edition. Nutrients Requirements of Domestic Animals. National Academic Press Washington DC USA. 36 p. https://doi.org/10.17226/35.

Ohara, S., Suzuki, K. and Ohira, T. (1994). Condensed tannins from Acacia mearnsii and their biological activities. Mokuzai Gakkaishi, 40: 1363–1374.

Olivas-Aguirre, F. J., Wall-Medrano, A., González-Aguirre, G. A., López-Díaz, J. A., Álvarez-Parrilla, E., de la Rosa, L. A. and Ramos-Jimenez, A. (2015). Taninos hidrolizables; bioquímica, aspectos nutricionales y analíticos y efectos en la salud. Nutrición hospitalaria, 31 (1), 55-66. https://doi.org/ 10.3305/nh.2015.31.1.7699

Ortiz J. N., Miranda, H. and Peroza, D. (2015). Uniformidad y pérdidas por evaporación y arrastre en riego por aspersión en Tarabana, estado Lara. Revista Unellez de Ciencia y Tecnología, 33, 53-61. http://revistas.unellez.edu.ve/index.php/ruct/article/download/246/234

Pérez J., Cervera, C., Falcao, E., Concha, L., Maertnes, L., Villamide, M. and Xiccato, G. (1995). European ring-test on in vivo determination of digestibility in rabbits: reproducibility of a reference method compared with individual laboratory procedures. World Rabbit Science, 3, 41-43. http://www.wrs.upv.es/files/journals/vol%203_1_perez.pdf (Consulted on Sept. 9, 2020).

Pizzani, P., Matute, I., Martino, G., Arias, A., Godoy, S., Pereira, L., Palma, J. and Rengifo, M. (2006). Composición Fitoquímica y Nutricional de Algunos Frutos de Árboles de Interés Forrajero de Los Llanos Centrales de Venezuela. Revista de la Facultad de Ciencias Veterinarias, 47 (2), 105-113.

Porter L. J., Hrstich, L. N. and Chan, B. G. (1986). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25, 223-230. https://doi.org/10.1016/S0031-9422(00)94533-3

Romero, C., Nouel-Borges, G., Espejo-Díaz, M., Rojas, J. and Sánchez-Blanco, R. (2010). Efecto de la cal dolomítica a diferentes niveles como atenuante de taninos sobre de hojas y vainas de Úveda (Acacia macracantha). Proceedings of the 15th Venezuelan Congress of Animal Production and Industry, held in Barquisimeto, Lara State, at Lisandro Alvarado Central Western University in October 2010. Abstracts - Nutrition, p. 21.

Romero-Cáceres, A. (2006). Evaluación de diferentes niveles de inclusión de frutos de Acacia macracantha en raciones para conejos. Tesis Bach. Lisandro Alvarado Central Western University. Lara, Venezuela.

Romero-Cáceres, A., Nouel-Borges, G., Espejo-Díaz, M. and Sánchez-Blanco, R. (2008). Evaluación de diferentes niveles de inclusión de frutos de Acacia macracantha y raíz de yuca (Manihot sculenta) en raciones para conejos. Revista Científica, 18 (S1), 464. https://produccioncientificaluz.org/index.php/cientifica/article/view/15423/15397

Salas-Araujo, J., Nouel-Borges, G., Sánchez-Blanco, R. and Espejo-Díaz, M. (2008). Evaluación de raciones basadas en hojas de Mimosa arenosa y vainas de Acacia macracantha en distintas proporciones y su efecto sobre parámetros productivos en conejos. Revista Científica, 18 (S1), 464. https://produccioncientificaluz.org/index.php/cientifica/article/view/15423/15397

Sánchez, A., Torres-Navarrete, E., Meza-Bone, G., Estupiñán-Véliz, K., Torres-Navarrete, Y., Barrera-Álvarez, A., Mackencie-Álvarez, Y. and López-Intriago, L. (2012). Efecto de dos leguminosas y banano maduro en la producción y reproducción de conejos Nueva Zelanda. Ciencia y Tecnología, 5 (2), 27-31. https://doi.org/10.18779/cyt.v5i2.124

Trocino A., García, J., Carabaño, R. and Xiccato, G. (2013). A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Science, 21 (1), 1-15. https://doi.org/10.4995/wrs.2013.1285

Van Soest P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wink, M. (2013). Evolution of secondary metabolites in legumes (Fabaceae). South African Journal of Botany, 89, 164–175. http://dx.doi.org/10.1016/j.sajb.2013.06.006

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.