Abstract
The initial phase of a plant life cycle is a short and critical period, when individuals are more vulnerable to environmental factors. The morphological and anatomical study of seedlings and saplings leaf type, enables the understanding of species strategies of fundamental importance in their establishment and survival. The objective of this study was to analyze the structure of seedlings and saplings leaf types of three mangrove species, Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, to understand their early life adaptive strategies to the environment. A total of 30 fully expanded cotyledons (A. schaueriana and L. racemosa), 30 leaves of seedlings, and 30 leaves of saplings of each species were collected from a mangrove area in Guaratuba Bay, Paraná State, Brazil. Following standard methods, samples were prepared for morphological (leaf dry mass, density, thickness) and anatomical analysis (epidermis and sub-epidermal layers, stomata types, density of salt secretion glands, palisade and spongy parenchyma thickness). To compare leaf types among species one-way ANOVA and Principal Component Analysis were used, while Cluster Analysis evaluated differences between the species. We observed significant structural differences among species leaf types. A. schaueriana showed the thickest cotyledons, while L. racemosa presented a dorsiventral structure. Higher values of the specific leaf area were observed for seedlings leaves of A. schaueriana, cotyledons of L. racemosa and saplings leaves of A. schaueriana and R. mangle. Leaf density was similar to cotyledons and seedlings leaves in A. schaueriana and L. racemosa, while R. mangle had seedlings leaves denser than saplings. A. schaueriana and R. mangle showed hypostomatic leaves, while L. racemosa amphistomatic; besides, A. chaueriana showed diacytic stomata, while L. racemosa anomocytic, and R. mangle ciclocytic. Seedling leaves were thicker in R. mangle (535 µm) and L. racemosa (520 µm) than in A. schaueriana (470.3 µm); while saplings leaves were thicker in L. racemosa (568.3 µm) than in A. schaueriana seedlings (512.4 µm) and R. mangle (514.6 µm). Besides, seedlings leaves palisade parenchyma showed increasing thickness in L. racemosa (119.2 µm) < A. schaueriana (155.5 µm) < R. mangle (175.4 µm); while in saplings leaves as follows R. mangle (128.4 µm) < A. schaueriana (183.4 µm) < L. racemosa (193.9 µm). Similarly, seedlings leaves spongy parenchyma thickness values were as follows A. schaueriana (182.6 µm) = R. mangle (192.8 µm) < L. racemosa (354.4 µm); while in saplings were A. schaueriana (182.6 µm) = R. mangle (187.3 µm) < L. racemosa (331.3 µm). The analyzed traits, in different combinations, represent morphological adjustments of leaf types to reduce water loss, eliminate salt excess, increase the absorption of light, allowing a higher efficiency on the maintenance of physiological processes in this initial growth stage.
References
Arruda, R. C. O., Viglio, N. S. F., & Barros, A. A. M. (2009). Anatomia foliar de halófitas e psamófilas reptantes ocorrentes na restinga de Ipitangas, Saquarema, Rio de Janeiro, Brasil. Rodriguésia, 60, 333-352.
Bezerra, M. A., de Lacerda, C. F., Filho., E. G., de Abreu., C. E. B., & Prisco, J. T. (2007). Physiology of cashew plants grown under adverse conditions. Brazilian Journal of Plant Physiology, 19, 449-461.
Bigarella, J. J. (2001). Contribuição ao estudo da planície litorânea do estado do Paraná. Brazilian Archives of Biology and Technology an International Journal, Jubilee Volume 1946-2001, 65-110.
Boeger, M. R. T., Cavichiolo. L. E., Pil., M. W., & Labiak, P. H. (2007). Variabilidade fenotípica de Rumohra adiantiformis (G. Forst) Ching (Dryopteridaceae). Hoehnea, 34, 553-561.
Boeger, M. R. T., & Gluzezak, R. M. (2006). Adaptações estruturais de sete espécies de plantas para as condições ambientais da área de dunas de Santa Catarina, Brasil. Iheringia, 61, 73-82.
Boeger, M. R. T., Kaehler, M., Melo Jr, J. C. F., Gomes, M. Z., Oliveira. L. da S., Chaves, C. R. M., & Schottz, E. de S. (2006). Estrutura foliar de seis espécies do subosque de um remanescente de Floresta Ombrófila Mista. Hoehnea, 33, 521-531.
Borkar, M. U., Athalye, R. P., & Goldin, Q. (2011). Salinity induced changes in the leaf anatomy of the mangrove Avicennia marina along the anthropogenically stressed tropical creek. Journal of Coastal Development, 14, 191-201.
Cardona-Olarte, P., Twilley, R. R., Krausse, K. W., & Rivera-Monroy, V. (2006). Responses of neotropical mangrove species grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia, 569, 325-341.
Cintrón, G., & Schaeffer-Novelli, Y. (1984). Methods for studying mangrove structure. In S. C. Snedaker & J. G. Snedaker (Eds.), The Mangrove Ecosystem: Research Methods. USA: UNESCO.
Cram, W. J., Torr, P. G., & Rose, D. A. (2002). Salt allocation during leaf development and leaf fall in mangroves. Trees, 16, 112-119.
Dickson, W. C. (2000). Integrative Plant Anatomy. San Diego: Harcourt Academic Press.
Drennan, P. M., & Berjak, P. (1982). Degeneration of the salt glands accompanying foliar maturation in Avicennia marina (Forsskal) Vierh. New Phytologist, 90, 165-176.
Embrapa. (1999). Sistema Brasileiro de Classificação de Solos. Brasília: Embrapa.
Evans, J. R., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell and Environment, 24, 755-767.
Fahn, A., & Cutler, D. I. (1992). Xerophytes. Berlin: Gebrüder Borntraeger.
Feller, I. C. (1996). Effects of nutrient enrichment on leaf anatomy of dwarf Rhizophora mangle L. (red mangrove). Biotropica, 28, 13-22.
Franklin, G. L. (1945). Preparation of thin sections of synthetic resins and wood-resin composites and a new macerating method for wood. Nature, 155, 24-51.
Givnish, T. J. (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92.
Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to plant nutrition. Annual Review of Ecology and Systematics, 8, 83-107.
Johansen, D. A. (1940). Plant microtecnique. New York: McGraw Hill.
Kathiresan, K. (2008) Biodiversity in Mangrove ecosystems in India: status, challenges and strategies. In P. Natarajan, K. V. Jayachandran, S. Kannaiyan, B. Ambat, & A. Augustine (Eds.), Glimpses of Aquatic Biodiversity. Cochin, India: CUSAT.
Kathiresan, K., & Rajendran, N. (2002). Growth of a mangrove (Rhizophora apiculata) seedlings as influenced by GA3, light and salinity. Revista de Biología Tropical, 50, 525-530.
Kitajima, K. (1992). Relationship between photosynthesis and thickness of cotyledons for tropical tree species. Functional Ecology, 6, 582-589.
Köeppen, W. (1948). Climatologia: con um estúdio de los climas de la Tierra. Mexico: Fondo de Cultura Economica.
Krauss, K. W., & Allen, J. A. (2003). Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquatic Botany, 77, 311-324.
Lambers, H., Chapim III, F. S., & Pons, T. L. (1998). Plant Physiological Ecology. New York: Springer.
Lin, P. (1984). Mangrove Vegetation. Beijing: China Ocean Press.
López-Hoffman, L., Ackerly, D. D., Anten, N. P. R., Denoyer., J. L., & Martinez-Ramos, M. (2007). Gap-dependence in mangrove life-history strategies: a consideration of the entire life cycle and patch dynamics. Journal of Ecology, 95, 1222-1233.
Lovelock, C. E., & Feller, I. C. (2003). Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia, 134, 455-462.
Menezes, G. V., Shaeffer-Novelli, Y., Poffo, I. R. F., & Eysink, G. G. J. (2005). Mangrove recovering: a case study at Baixada Santista of São Paulo. Brazil. Brazilian Journal of Aquatic Science and Technology, 9, 67-74.
Meziani, D., & Shipley, B. (1999). Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell and Environment, 22, 447-459.
Mott, K. A., Gibson, A. C., & O’Leary, J. E. (1982). The adaptative significance of amphistomatic leaves. Plant Cell and Environment, 5, 455-460.
Naidoo, G. (2006). Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany, 97, 1095-1101.
Naidoo, G. (2010). Ecophysiological differences between fringe and dwarf Avicennia marina mangroves. Trees, 24, 667-673.
Noernberg, M. A., Angelotti, R., Caldeira, G. A., & Ribeiro de Sousa, A. F. (2008). Determinação da sensibilidade do litoral paranaense à contaminação por óleo. Brazilian Journal of Aquatic Science and Technology, 12, 49-59.
Paraguassu, L. A. A., & Silva, N. M. (2007). Caracterização fitossociológica do manguezal de Porto de Sauípe, Entre Rios, Bahia. Diálogos e Ciência-Revista da Rede de Ensin, 12, 1-11.
Parida, A. K., & Jha, B. (2010). Salt tolerance mechanisms in mangroves: A review. Trees, 24, 199-217.
Patel, N. T., Gupta, A., & Pandey, A. N. (2010). Salinity tolerance of Avicennia marina (Forssk.) Vierh. from Gujarat coasts of India. Aquatic Botany, 93, 9-16.
Pyykkö, M. (1979). Morphology and anatomy of leaves from some woody plants in a humid tropical forest of Venezuelan Guayana. Acta Botanica Fennica, 112, 1-41.
Ressel, K., Guilherme, F. A. G., Schiavini, I., & Oliveira, P. E. (2004). Ecologia morfofuncional de plântulas de espécies arbóreas da Estação Ecológica do Panga, Uberlândia, Minas Gerais. Revista Brasileira de Botânic, 27, 311-323.
Saenger, P. (2002). Mangrove ecology, silviculture and conservation. The Netherlands: Kluwer Academic Publishers.
Schaeffer-Novelli, Y., Cintrón-Molero, G., & Adaime, R. R. (1990). Variability of mangrove ecosystemsalong the Brazilian coast. Estuaries, 13, 204-218.
Schaeffer-Novelli, Y., Cintrón-Molero, G., Soares, M. L. G., & De-Rosa, T. (2000). Brazilian mangroves. Aquatic Ecosystem Health and Management, 3, 561-570.
Sereneski-de Lima, C., Boeger, M. R. T., Larcher-de-Carvalho, L., Pelozzo, A., & Soffiatti, P. (2013). Sclerophylly in mangrove tree species from South Brazil. Revista Mexicana de Biodiversidad, 84, 1159-1166.
Silva, J. M., Martins, M. B. G., & Cavalheiro, A. J. (2010). Caracterização anatômica e perfis químicos de folhas de Avicennia schaueriana Stapf. and Leech. ex Moldenke e Rhizophora mangle L. de manguezais impactados e não impactados do litoral paulista. Insula, 39, 14-33.
Smithsonian Marine Station at Ft Pierce (SMSF). (2001). Rhizophora mangle. Retrieved from http://www.sms.si.edu/irlspec/Rhizop_mangle.htm .
Sobrado, M. A. (2001). Hydraulic properties of a mangrove Avicennia germinans as affected by NaCl. Biologia Plantarum, 44, 435-438.
Sobrado, M. A. (2004). Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees, 18, 422-427.
Sobrado, M. A. (2005). Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica, 43, 217-221.
Sobrado, M. A. (2007). Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist, 173, 584-591.
Souza, L. A. (2003). Morfologia e anatomia vegetal (célula. tecidos. órgãos e plântula). Ponta Grossa: Editora da Universidade Estadual de Ponta Grossa.
STATISTICA (data analysis software system) (version 7.0) [Computer program]. Oklahoma: StatSoft, Inc.
Thompson, W. A., Kriedemann, P. E., & Craig, I. E. (1992). Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. I. Growth, leaf anatomy and nutrient content. Australian Journal of Plant Physiology, 19, 1-18.
Tomlinson, P. B. (1995). The botany of mangroves. Cambridge: Cambridge University Press.
Turner, I. M. (1994). Sclerophylly: primarily protective? Ecology, 8, 669-675.
Twilley, R. R., & Day Jr, J. W. (2013). Mangrove wetlands. In J. W. Day Jr., B. C. Crump, W. M. Kemp, & A. Yáñez-Arancibia (Eds.), Estuarine Ecology (pp. 165-202). Singapore: Wiley-Blackwell.
Ungar, I. A. (1982). Germination ecology of halophytes. In D. N. Sen, & K. Rajpurohit (Eds.), Contributions to the Ecology of Halophytes. Tasks for vegetation science (pp. 143-154). The Hague: Springer.
Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource use strategy in floras with succulent species. New Phytologist, 154, 147-157.
Vogel, E. F. (1980). Seedlings of dicotyledons: structure, development types: descriptions of 150 woody Malesian taxa. Wageningen: Centre for Publishing and Documentation.
Vogelmann, T. C., Nishio, J. N., & Smith, W. K. (1996). Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science, 1, 65-70.
Wang, W. Q., Ke, L., Tam, N., & Wong, Y. S. (2002). Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology, 141, 1029-1034.
Werner, A., & Stelzer, R. (1990). Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell and Environment, 13, 243-255.
Witkowski, E. T. F., & Lamont, B. B. (1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88, 486-493.
Yan, Z., Wang, W., & Tang, D. (2007). Effect of different time of salt stress on growth and some physiological processes of Avicennia marina seedlings. Marine Biology, 152, 581-587.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2016 Revista de Biología Tropical