Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Estrategia morfológica de las hojas de las plántulas y plantones de Rhizophora mangle (Rhizophoraceae), Laguncularia racemosa (Combretaceae) and Avicennia schaueriana (Acanthaceae) en el sur de Brasil
PDF (English)
HTML (English)

Palabras clave

Adaptive strategies
cotyledons
functional morphology
morphological adaptations
salt glands.
Estrategias de adaptación
cotiledones
morfología funcional
adaptaciones morfológicas
glándulas de sal.

Cómo citar

Pelozo, A., T. Boeger, M. R., Sereneski-de-Lima, C., & Soffiatti, P. (2016). Estrategia morfológica de las hojas de las plántulas y plantones de Rhizophora mangle (Rhizophoraceae), Laguncularia racemosa (Combretaceae) and Avicennia schaueriana (Acanthaceae) en el sur de Brasil. Revista De Biología Tropical, 64(1), 305–317. https://doi.org/10.15517/rbt.v64i1.17923

Resumen

La fase inicial del ciclo de vida de una planta es un período corto y crítico, cuando los individuos son más vulnerables a factores ambientales. El estudio morfológico y anatómico del tipo de hojas de las plántulas y árboles pequeños, permite la comprensión de las estrategias de las especies, que es de importancia fundamental para su establecimiento y supervivencia. El objetivo de este estudio fue analizar la estructura de los tipos de hojas de las plántulas y árboles pequeños de tres especies de mangle: Avicennia schaueriana, Laguncularia racemosa y Rhizophora mangle, para entender sus estrategias de vida tempranas de adaptación al ambiente. Un total de 30 cotiledones completamente abiertos (A. schaueriana y L. racemosa), 30 hojas de plántulas, y 30 hojas de árboles pequeños de cada especie se recolectaron en una área de manglar en Bahía Guaratuba, Estado de Paraná, Brasil. Siguiendo los métodos estándares, se prepararon muestras para análisis morfológicos (biomasa de hoja seca, densidad y espesor) y anatómicos (epidermis y capas sub-epidérmicas, tipos de estomas, densidad de glándulas secretoras de sal y grosor del parénquima empalizado y del esponjoso). Para comparar los tipos de hojas entre las especies se utilizaron un modelo lineal y Análisis de Componentes Principales, mientras que un análisis de conglomerados evaluó las diferencias entre las especies. Observamos diferencias estructurales significativas entre tipos de hoja en las especies. A. schaueriana mostró cotiledones más gruesos, mientras que L. racemosa presenta una estructura dorsiventral. Se observaron valores más altos del área foliar específica para las hojas de las plántulas de A. schaueriana, cotiledones de L. racemosa y hojas de árboles pequeños de A. schaueriana y R. mangle. La densidad de la hoja fue similar a la de los cotiledones y hojas de plántulas de A. schaueriana y L. racemosa, mientras que R. mangle tenía las hojas de las plántulas más gruesas que los árboles pequeños. A. schaueriana y R. mangle mostraron hojas hipostomáticas; L. racemosa anfiestomáticas; por otro lado A. chaueriana mostró estomas diacíticos, L. racemosa anomocíticos y R. mangle ciclocíticos. Las hojas de las plántulas eran más gruesas en R. mangle (535 micras) y L. racemosa (520 micras) que en A. schaueriana (470.3 m); mientras que las hojas de las plántulas eran más gruesas en L. racemosa (568.3 m) que en A. schaueriana (512.4 micras) y R. mangle (514.6 m). Además el parénquima empalizado de las plántulas mostró un aumento de espesor en L. racemosa (119.2 m) < A. schaueriana (155.5 m) <R. mangle (175.4 m); mientras que en las hojas de los árboles pequeños fue de siguiente manera: R. mangle (128.4 m) <A. schaueriana (183.4 m) <L. racemosa (193.9 m). Del mismo modo, en las hojas de las plántulas los valores del espesor del parénquima esponjoso fueron: A. schaueriana (182.6 m) = R. mangle (192.8 m) <L. racemosa (354.4 m); mientras que en los árboles pequeños: A. schaueriana (182.6 m) = R. mangle (187.3 m) <L. racemosa (331.3 m). Los rasgos analizados, en diferentes combinaciones, representan ajustes morfológicos de tipos de hojas para reducir la pérdida de agua, eliminar el exceso de sal, aumentar la absorción de la luz, lo que permite una mayor eficiencia en el mantenimiento de los procesos fisiológicos en esta etapa de crecimiento inicial.

https://doi.org/10.15517/rbt.v64i1.17923
PDF (English)
HTML (English)

Citas

Arruda, R. C. O., Viglio, N. S. F., & Barros, A. A. M. (2009). Anatomia foliar de halófitas e psamófilas reptantes ocorrentes na restinga de Ipitangas, Saquarema, Rio de Janeiro, Brasil. Rodriguésia, 60, 333-352.

Bezerra, M. A., de Lacerda, C. F., Filho., E. G., de Abreu., C. E. B., & Prisco, J. T. (2007). Physiology of cashew plants grown under adverse conditions. Brazilian Journal of Plant Physiology, 19, 449-461.

Bigarella, J. J. (2001). Contribuição ao estudo da planície litorânea do estado do Paraná. Brazilian Archives of Biology and Technology an International Journal, Jubilee Volume 1946-2001, 65-110.

Boeger, M. R. T., Cavichiolo. L. E., Pil., M. W., & Labiak, P. H. (2007). Variabilidade fenotípica de Rumohra adiantiformis (G. Forst) Ching (Dryopteridaceae). Hoehnea, 34, 553-561.

Boeger, M. R. T., & Gluzezak, R. M. (2006). Adaptações estruturais de sete espécies de plantas para as condições ambientais da área de dunas de Santa Catarina, Brasil. Iheringia, 61, 73-82.

Boeger, M. R. T., Kaehler, M., Melo Jr, J. C. F., Gomes, M. Z., Oliveira. L. da S., Chaves, C. R. M., & Schottz, E. de S. (2006). Estrutura foliar de seis espécies do subosque de um remanescente de Floresta Ombrófila Mista. Hoehnea, 33, 521-531.

Borkar, M. U., Athalye, R. P., & Goldin, Q. (2011). Salinity induced changes in the leaf anatomy of the mangrove Avicennia marina along the anthropogenically stressed tropical creek. Journal of Coastal Development, 14, 191-201.

Cardona-Olarte, P., Twilley, R. R., Krausse, K. W., & Rivera-Monroy, V. (2006). Responses of neotropical mangrove species grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia, 569, 325-341.

Cintrón, G., & Schaeffer-Novelli, Y. (1984). Methods for studying mangrove structure. In S. C. Snedaker & J. G. Snedaker (Eds.), The Mangrove Ecosystem: Research Methods. USA: UNESCO.

Cram, W. J., Torr, P. G., & Rose, D. A. (2002). Salt allocation during leaf development and leaf fall in mangroves. Trees, 16, 112-119.

Dickson, W. C. (2000). Integrative Plant Anatomy. San Diego: Harcourt Academic Press.

Drennan, P. M., & Berjak, P. (1982). Degeneration of the salt glands accompanying foliar maturation in Avicennia marina (Forsskal) Vierh. New Phytologist, 90, 165-176.

Embrapa. (1999). Sistema Brasileiro de Classificação de Solos. Brasília: Embrapa.

Evans, J. R., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell and Environment, 24, 755-767.

Fahn, A., & Cutler, D. I. (1992). Xerophytes. Berlin: Gebrüder Borntraeger.

Feller, I. C. (1996). Effects of nutrient enrichment on leaf anatomy of dwarf Rhizophora mangle L. (red mangrove). Biotropica, 28, 13-22.

Franklin, G. L. (1945). Preparation of thin sections of synthetic resins and wood-resin composites and a new macerating method for wood. Nature, 155, 24-51.

Givnish, T. J. (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92.

Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to plant nutrition. Annual Review of Ecology and Systematics, 8, 83-107.

Johansen, D. A. (1940). Plant microtecnique. New York: McGraw Hill.

Kathiresan, K. (2008) Biodiversity in Mangrove ecosystems in India: status, challenges and strategies. In P. Natarajan, K. V. Jayachandran, S. Kannaiyan, B. Ambat, & A. Augustine (Eds.), Glimpses of Aquatic Biodiversity. Cochin, India: CUSAT.

Kathiresan, K., & Rajendran, N. (2002). Growth of a mangrove (Rhizophora apiculata) seedlings as influenced by GA3, light and salinity. Revista de Biología Tropical, 50, 525-530.

Kitajima, K. (1992). Relationship between photosynthesis and thickness of cotyledons for tropical tree species. Functional Ecology, 6, 582-589.

Köeppen, W. (1948). Climatologia: con um estúdio de los climas de la Tierra. Mexico: Fondo de Cultura Economica.

Krauss, K. W., & Allen, J. A. (2003). Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquatic Botany, 77, 311-324.

Lambers, H., Chapim III, F. S., & Pons, T. L. (1998). Plant Physiological Ecology. New York: Springer.

Lin, P. (1984). Mangrove Vegetation. Beijing: China Ocean Press.

López-Hoffman, L., Ackerly, D. D., Anten, N. P. R., Denoyer., J. L., & Martinez-Ramos, M. (2007). Gap-dependence in mangrove life-history strategies: a consideration of the entire life cycle and patch dynamics. Journal of Ecology, 95, 1222-1233.

Lovelock, C. E., & Feller, I. C. (2003). Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia, 134, 455-462.

Menezes, G. V., Shaeffer-Novelli, Y., Poffo, I. R. F., & Eysink, G. G. J. (2005). Mangrove recovering: a case study at Baixada Santista of São Paulo. Brazil. Brazilian Journal of Aquatic Science and Technology, 9, 67-74.

Meziani, D., & Shipley, B. (1999). Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell and Environment, 22, 447-459.

Mott, K. A., Gibson, A. C., & O’Leary, J. E. (1982). The adaptative significance of amphistomatic leaves. Plant Cell and Environment, 5, 455-460.

Naidoo, G. (2006). Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany, 97, 1095-1101.

Naidoo, G. (2010). Ecophysiological differences between fringe and dwarf Avicennia marina mangroves. Trees, 24, 667-673.

Noernberg, M. A., Angelotti, R., Caldeira, G. A., & Ribeiro de Sousa, A. F. (2008). Determinação da sensibilidade do litoral paranaense à contaminação por óleo. Brazilian Journal of Aquatic Science and Technology, 12, 49-59.

Paraguassu, L. A. A., & Silva, N. M. (2007). Caracterização fitossociológica do manguezal de Porto de Sauípe, Entre Rios, Bahia. Diálogos e Ciência-Revista da Rede de Ensin, 12, 1-11.

Parida, A. K., & Jha, B. (2010). Salt tolerance mechanisms in mangroves: A review. Trees, 24, 199-217.

Patel, N. T., Gupta, A., & Pandey, A. N. (2010). Salinity tolerance of Avicennia marina (Forssk.) Vierh. from Gujarat coasts of India. Aquatic Botany, 93, 9-16.

Pyykkö, M. (1979). Morphology and anatomy of leaves from some woody plants in a humid tropical forest of Venezuelan Guayana. Acta Botanica Fennica, 112, 1-41.

Ressel, K., Guilherme, F. A. G., Schiavini, I., & Oliveira, P. E. (2004). Ecologia morfofuncional de plântulas de espécies arbóreas da Estação Ecológica do Panga, Uberlândia, Minas Gerais. Revista Brasileira de Botânic, 27, 311-323.

Saenger, P. (2002). Mangrove ecology, silviculture and conservation. The Netherlands: Kluwer Academic Publishers.

Schaeffer-Novelli, Y., Cintrón-Molero, G., & Adaime, R. R. (1990). Variability of mangrove ecosystemsalong the Brazilian coast. Estuaries, 13, 204-218.

Schaeffer-Novelli, Y., Cintrón-Molero, G., Soares, M. L. G., & De-Rosa, T. (2000). Brazilian mangroves. Aquatic Ecosystem Health and Management, 3, 561-570.

Sereneski-de Lima, C., Boeger, M. R. T., Larcher-de-Carvalho, L., Pelozzo, A., & Soffiatti, P. (2013). Sclerophylly in mangrove tree species from South Brazil. Revista Mexicana de Biodiversidad, 84, 1159-1166.

Silva, J. M., Martins, M. B. G., & Cavalheiro, A. J. (2010). Caracterização anatômica e perfis químicos de folhas de Avicennia schaueriana Stapf. and Leech. ex Moldenke e Rhizophora mangle L. de manguezais impactados e não impactados do litoral paulista. Insula, 39, 14-33.

Smithsonian Marine Station at Ft Pierce (SMSF). (2001). Rhizophora mangle. Retrieved from http://www.sms.si.edu/irlspec/Rhizop_mangle.htm .

Sobrado, M. A. (2001). Hydraulic properties of a mangrove Avicennia germinans as affected by NaCl. Biologia Plantarum, 44, 435-438.

Sobrado, M. A. (2004). Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees, 18, 422-427.

Sobrado, M. A. (2005). Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica, 43, 217-221.

Sobrado, M. A. (2007). Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist, 173, 584-591.

Souza, L. A. (2003). Morfologia e anatomia vegetal (célula. tecidos. órgãos e plântula). Ponta Grossa: Editora da Universidade Estadual de Ponta Grossa.

STATISTICA (data analysis software system) (version 7.0) [Computer program]. Oklahoma: StatSoft, Inc.

Thompson, W. A., Kriedemann, P. E., & Craig, I. E. (1992). Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. I. Growth, leaf anatomy and nutrient content. Australian Journal of Plant Physiology, 19, 1-18.

Tomlinson, P. B. (1995). The botany of mangroves. Cambridge: Cambridge University Press.

Turner, I. M. (1994). Sclerophylly: primarily protective? Ecology, 8, 669-675.

Twilley, R. R., & Day Jr, J. W. (2013). Mangrove wetlands. In J. W. Day Jr., B. C. Crump, W. M. Kemp, & A. Yáñez-Arancibia (Eds.), Estuarine Ecology (pp. 165-202). Singapore: Wiley-Blackwell.

Ungar, I. A. (1982). Germination ecology of halophytes. In D. N. Sen, & K. Rajpurohit (Eds.), Contributions to the Ecology of Halophytes. Tasks for vegetation science (pp. 143-154). The Hague: Springer.

Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource use strategy in floras with succulent species. New Phytologist, 154, 147-157.

Vogel, E. F. (1980). Seedlings of dicotyledons: structure, development types: descriptions of 150 woody Malesian taxa. Wageningen: Centre for Publishing and Documentation.

Vogelmann, T. C., Nishio, J. N., & Smith, W. K. (1996). Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science, 1, 65-70.

Wang, W. Q., Ke, L., Tam, N., & Wong, Y. S. (2002). Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology, 141, 1029-1034.

Werner, A., & Stelzer, R. (1990). Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell and Environment, 13, 243-255.

Witkowski, E. T. F., & Lamont, B. B. (1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88, 486-493.

Yan, Z., Wang, W., & Tang, D. (2007). Effect of different time of salt stress on growth and some physiological processes of Avicennia marina seedlings. Marine Biology, 152, 581-587.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2016 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.