Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Immune response of the Antarctic sea urchin Sterechinus neumayeri: cellular, molecular and physiological approach.
PDF
HTML

Keywords

Erizo de mar
Antártida
Sterechinus neumayeri
coelomocytes
fagocitosis
expresión genética. Sea urchin
Antarctica
Sterechinus neumayeri
coelomocytes
phagocytosis
gene expression.

How to Cite

Gonzalez-Aravena, M., Perez-Troncoso, C., Urtubia, R., Branco, P., Machado Cunha da Silva, J. R., Mercado, L., De Lorgeril, J., Bethke, J., & Paschke, K. (2016). Immune response of the Antarctic sea urchin Sterechinus neumayeri: cellular, molecular and physiological approach. Revista De Biología Tropical, 63(S2), 309–320. https://doi.org/10.15517/rbt.v63i2.23165

Abstract

In the Antarctic marine environment, the water temperature is usually between 2 and - 1.9 °C. Consequently, some Antarctic species have lost the capacity to adapt to sudden changes in temperature. The study of the immune response in Antarctic sea urchin (Sterechinus neumayeri) could help us understand the future impacts of global warming on endemic animals in the Antarctic Peninsula. In this study, the Antarctic sea urchins were challenged with lipopolysaccharides and Vibrio alginolitycus. The cellular response was evaluated by the number of coelomocytes and phagocytosis. A significant increase was observed in red sphere cells and total coelomocytes in animals exposed to LPS. A significant rise in phagocytosis in animals stimulated by LPS was also evidenced. Moreover, the gene expression of three immune related genes was measured by qPCR, showing a rapid increase in their expression levels. By contrast, these immune genes showed a depression in their expression by a thermal effect at 5 and 10 °C. In addition, during bacterial injection, the oxygen consumption was higher in challenged animals. Our results showed that the immune response in the Antarctic sea urchin may be affected by acute thermal stress and that this immune response has a metabolic cost. 

 
https://doi.org/10.15517/rbt.v63i2.23165
PDF
HTML

References

Ardia, D. R., Gantz, J. E., Schneider, B. C., & Strebel, S. (2012). Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Functional Ecology, 26, 732-739.

Bertheussen, K., & Seljelid, R. (1978). Echinoid phagocytes in vitro. Experimental Cell Research, 111, 401-412.

Borges, J. C. S., Branco, P. C., Pressinotti, L. N., Severino, D., & Silva, J. R. M. C. (2010). Intranuclear crystalloids of Antarctic sea urchins as a biomarker for oil contamination. Polar Biology, 33, 843-849.

Borges, J. C. S., Porto-Neto, L. R., Mangiaterra, M. B., Jensch-Junior, B. E., & Silva, J. R. (2002). Phagocytosis in vivo and in vitro in the Antarctic Sea Urchin Sterechinus neumayeri at 0°C. Polar Biology, 25, 891-897.

Boutet, I., Tanguy, A., Le Guen, D., Piccino, P., Hourdez, S., Legendre, P., & Jollivet, D. (2009). Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society of London, 7, 3071-3079.

Branco, P. C., Pressinotti, L. N., Borges, J. C. S., Iunes, R. S., Kfoury-Jr, J. R., Silva, M. O., Gonzalez M., Santos M.F., Peck L.S., Cooper E.L. & Silva, J. R. M. C. (2012). Cellular biomarkers to elucidate global warming effects on Antarctic sea urchin Sterechinus neumayeri. Polar Biology, 35, 221-229.

Brockington, S., & Peck, L. S. (2001). Seasonality of respiration and ammonium excretion in the Antarctic echinoid Sterechinus neumayeri. Marine Ecology Progress Series, 219,159-168.

Clarke, A. (1991). What is cold adaptation and how should we measure it? American Zoologist, 31, 81-92.

Clow, L. A., Raftos, D. A., Gross, P. S., & Smith, L. C. (2004). The sea urchin complement homologue, SpC3, functions as an opsonin. Journal of Experimental Biology, 207, 2147-2155.

Gerardi, P., Lassegues, M., & Canicatti, C. (1990). Cellular-distribution of sea urchin antibacterial activity. Biology of the Cell, 70, 153-157.

Gonzalez, M., Gueguen, Y., Destoumieux-Garzón, D., Romestand, B., Fievet, J., Pugnière, M., Roquet F., Escoubas J.M., Vandenbulcke F., Levy O., Sauné L., Bulet P. & Bachère, E. (2007). Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI. Proceedings of the National Academy of Sciences, 104, 17759-17764.

Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, D. J. ... Vasta, G. R. (1999). Emerging marine diseases: climate links and anthropogenic factors. Science, 285, 1505-1510.

Haug, T., Kjuul, A. K., Styrvold, O. B., Sandsdalen, E., Olsen, O. M., & Stensvag, K. (2002). Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). Journal of Invertebrates Pathology, 81, 94-102.

Holm, K., Dupont, S., Skold, H., Stenius, A., Thorndyke, M., & Hernroth, B. (2008). Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). Journal of Experimental Biology, 211, 2551-2558.

Inoue K., Takano, H., Shimada, A., & Satoh, M. (2009). Metallothionein as an anti-inflammatory mediator. Mediators of Inflammation, 101659.

Krasity, B. C., Troll, J. V., Weiss, J. P., & McFall-Ngai, M. J. (2011). LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochemical Society Transactions, 39, 1039-44.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)). Methods, 25, 402-408.

Matranga, V., Toia, G., Bonaventura, R., & Muller, W. E. G. (2000). Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress and Chaperone, 5, 113-120.

Nair, S. V., Del Valle, H., Gross, P. S., Terwilliger, D. P., & Smith, L. C. (2005). Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune in an invertebrate. Physiological Genomics, 22, 33-47.

Ovando, F., Gimpel, C., Cardenas, C., Silva, J. R. M., De Lorgeril, J., & Gonzalez, M. (2012). Cloning and expression analysis of allograft inflammatory factor type-1 in coelomocytes of Antarctic sea urchin (Sterechinus neumayeri). Journal Shellfish Research, 31, 875-883.

Piano, A., Valbonesi, P., & Fabbri, E. (2004). Expression of cytoprotective proteins, heat shock protein 70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress and Chaperone, 9, 134-142.

Pinsino, A., Della-Torre, C., Sammarini, V., Bonaventura, R., Amato, E., & Matranga, V. (2008). Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Italy. Cell Biology and Toxicology, 24, 541-552.

Rast, P. J., Smith, L. C., Loza-Coll, M., Hibino, T., & Litman, G. W. (2006). Genomic insights into the immune system of the sea urchin. Science, 314, 952-956.

Scudiero, R., Capasso C., Carginale, V., Riggio, M., Capasso, A., Ciaramella, M., Filosa S. & Parisi, E. (1997). PCR amplification and cloning of metallothionein complementary DNAs in temperate and Antarctic sea urchin characterized by a large difference in egg metallothionein content. Cellular and Molecular Life Science, 53, 472-477.

Sea Urchin Sequencing Consortium. (2006). The Genome of the Sea Urchin Strongylocentrotus purpuratus. Science, 314, 941-952.

Serafim, M .A., Company, R. M., Bebianno, M. J., & Langston, W. J. (2002). Effect of temperature and size on metallothionein synthesis in the gills of Mytilus galloprovincialis exposed to cadmium. Marine Environmental Research, 54, 361-365.

Silva, J. R. M. C., & Peck, L. (2000). Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler, 1906) at 0 °C. Polar Biology, 23, 225-230.

Silva, J. R. M. C., Hernandez-Blazquez, F. J., & Barbieri, R. L. (1998). Induced inflammatory response in the antarctic fish Nothothenia neglecta. Polar Biology, 20, 206-212.

Silva, J. R. M. C., Hernandez-Blazquez, F. J., Porto-Neto, L. R., & Borges, J. C. S. (2001). Comparative study of in vivo and in vitro phagocytosis including germicida capacity in Odontaster validus (Koehler, 1906) at 0 °C. Journal of Invertebrate Pathology, 77,180-185.

Smith, L. C., Ghosh, J., Buckley, K. M., Clow, L. A., Dheilly, N. M., Haug, T., Henson J.H., Li C., Lun C.M., Majeske A.J., Matranga V., Nair S.V., Rast J.P., Raftos D.A., Roth M., Sacchi S., Schrankel C.S. & Stensvåg, K. (2010). Echinoderm immunity. Advances in Experimental Medicine and Biology, 708, 260-301.

Smith, L. C., Rast, J. P., Brocton, V., Terwilleger, D. P., Nair, S. V., Bucley, K. M., & Majestke, A. J. (2006). The sea urchin immune system. Invertebrate Survival Journal, 3, 25–39.

Terwilliger, D.P., Buckley, K.M., Brockton, V., Ritter, N.J., & Smith, L.C. (2007). Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, b-1, 3-glucan, and dsRNA. BMC Molecular Biology, 8, 1-16.

Thomas, C. J., Kapoor, M., Sharma, S., Bausinger, H., Zyilan, U., Lipsker, D., Hanau D. & Surolia, A. (2002). Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Letter, 531, 184-188.

Tian, Y., Jain, S., Kelemen, S .E., & Autieri, M. V. (2009). AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis. American Journal of Physiology-Cell Physiology, 296, 256-266.

Van Cleef-Toedt, K. A., Kapla, L. A., & Crivello, J. F. (2001). Killifish metallothionein messenger RNA express on following temperature perturbation and cadmium exposure. Cell Stress and Chaperones, 4, 351-359.

Venier, P., Varotto, L., Rosani, U., Millino, C., Celegato, B., Bernante, F., Lanfranchi G., Novoa B., Roch P., Figueras A. & Pallavicini, A. (2011). Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics, 12, 69.

Weiss, J. (2003). Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defense against Gram-negative bacteria. Biochemical Society Transactions, 31, 785-790.

Yang, Z. F., Ho, D. W., Lau, C. K., Lam, C. T., Lum, C. T., Poon, R. T., & Fan, S. T. (2005). Allograft inflammatory factor-1 (AIF-1) is crucial for the survival and pro-inflammatory activity of macrophages. International Immunology, 17, 1391-1397.

Comments

Downloads

Download data is not yet available.