Resumen
En el medio ambiente de la Antártica la temperatura del agua es de entre 2 y - 1.9 °C. Por consecuencia ciertas especies han perdido la capacidad de adaptarse a los cambios repentinos de la temperatura del agua. El estudio de la respuesta inmune del erizo antártico (Sterechinus neumayeri) podría ayudar a comprender los futuros impactos en los animales endémicos del cambio climático en la Península Antártica. En este estudio nosotros hemos evaluado la respuesta inmunitaria de S. neumayeri respecto de estimulaciones con bacterias (Lipopolisacáridos y Vibrio alginolitycus) asi como durante el estrés térmico a 5 y 10 °C. La respuesta del erizo fue evaluada en relación al número de celomocitos circulantes, capacidad fagocítica de estos y por el análisis de la expresión de tres genes inmunitarios. Después de la estimulación con LPS un aumento significativo de células esferoidales rojas, de amebocitos fagocíticos y de celomocitos totales fue observado después de las primeras horas de estimulación, de la misma manera que la capacidad fagocítica. Por otra parte los tres genes inmunes medidos mostraron un aumento significativo de su expresión por qPCR después de la estimulación con LPS. El estrés térmico de 5 °C produjo un aumento de la expresión de estos tres genes inmunitarios, por el contrario a una temperatura más alta (10 °C) se produce la reducción de dos de entre ellos. Adicionalmente un aumento del consumo de oxígeno fue observado durante la estimulación bacteriana. Nuestros resultados muestran que la respuesta inmunitaria en el erizo antártico puede ser afectada por el estrés térmico agudo y que la respuesta inmune en invertebrados antárticos tendría un costo metabólico.
Citas
Ardia, D. R., Gantz, J. E., Schneider, B. C., & Strebel, S. (2012). Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Functional Ecology, 26, 732-739.
Bertheussen, K., & Seljelid, R. (1978). Echinoid phagocytes in vitro. Experimental Cell Research, 111, 401-412.
Borges, J. C. S., Branco, P. C., Pressinotti, L. N., Severino, D., & Silva, J. R. M. C. (2010). Intranuclear crystalloids of Antarctic sea urchins as a biomarker for oil contamination. Polar Biology, 33, 843-849.
Borges, J. C. S., Porto-Neto, L. R., Mangiaterra, M. B., Jensch-Junior, B. E., & Silva, J. R. (2002). Phagocytosis in vivo and in vitro in the Antarctic Sea Urchin Sterechinus neumayeri at 0°C. Polar Biology, 25, 891-897.
Boutet, I., Tanguy, A., Le Guen, D., Piccino, P., Hourdez, S., Legendre, P., & Jollivet, D. (2009). Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society of London, 7, 3071-3079.
Branco, P. C., Pressinotti, L. N., Borges, J. C. S., Iunes, R. S., Kfoury-Jr, J. R., Silva, M. O., Gonzalez M., Santos M.F., Peck L.S., Cooper E.L. & Silva, J. R. M. C. (2012). Cellular biomarkers to elucidate global warming effects on Antarctic sea urchin Sterechinus neumayeri. Polar Biology, 35, 221-229.
Brockington, S., & Peck, L. S. (2001). Seasonality of respiration and ammonium excretion in the Antarctic echinoid Sterechinus neumayeri. Marine Ecology Progress Series, 219,159-168.
Clarke, A. (1991). What is cold adaptation and how should we measure it? American Zoologist, 31, 81-92.
Clow, L. A., Raftos, D. A., Gross, P. S., & Smith, L. C. (2004). The sea urchin complement homologue, SpC3, functions as an opsonin. Journal of Experimental Biology, 207, 2147-2155.
Gerardi, P., Lassegues, M., & Canicatti, C. (1990). Cellular-distribution of sea urchin antibacterial activity. Biology of the Cell, 70, 153-157.
Gonzalez, M., Gueguen, Y., Destoumieux-Garzón, D., Romestand, B., Fievet, J., Pugnière, M., Roquet F., Escoubas J.M., Vandenbulcke F., Levy O., Sauné L., Bulet P. & Bachère, E. (2007). Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI. Proceedings of the National Academy of Sciences, 104, 17759-17764.
Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, D. J. ... Vasta, G. R. (1999). Emerging marine diseases: climate links and anthropogenic factors. Science, 285, 1505-1510.
Haug, T., Kjuul, A. K., Styrvold, O. B., Sandsdalen, E., Olsen, O. M., & Stensvag, K. (2002). Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). Journal of Invertebrates Pathology, 81, 94-102.
Holm, K., Dupont, S., Skold, H., Stenius, A., Thorndyke, M., & Hernroth, B. (2008). Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). Journal of Experimental Biology, 211, 2551-2558.
Inoue K., Takano, H., Shimada, A., & Satoh, M. (2009). Metallothionein as an anti-inflammatory mediator. Mediators of Inflammation, 101659.
Krasity, B. C., Troll, J. V., Weiss, J. P., & McFall-Ngai, M. J. (2011). LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochemical Society Transactions, 39, 1039-44.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)). Methods, 25, 402-408.
Matranga, V., Toia, G., Bonaventura, R., & Muller, W. E. G. (2000). Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress and Chaperone, 5, 113-120.
Nair, S. V., Del Valle, H., Gross, P. S., Terwilliger, D. P., & Smith, L. C. (2005). Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune in an invertebrate. Physiological Genomics, 22, 33-47.
Ovando, F., Gimpel, C., Cardenas, C., Silva, J. R. M., De Lorgeril, J., & Gonzalez, M. (2012). Cloning and expression analysis of allograft inflammatory factor type-1 in coelomocytes of Antarctic sea urchin (Sterechinus neumayeri). Journal Shellfish Research, 31, 875-883.
Piano, A., Valbonesi, P., & Fabbri, E. (2004). Expression of cytoprotective proteins, heat shock protein 70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress and Chaperone, 9, 134-142.
Pinsino, A., Della-Torre, C., Sammarini, V., Bonaventura, R., Amato, E., & Matranga, V. (2008). Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Italy. Cell Biology and Toxicology, 24, 541-552.
Rast, P. J., Smith, L. C., Loza-Coll, M., Hibino, T., & Litman, G. W. (2006). Genomic insights into the immune system of the sea urchin. Science, 314, 952-956.
Scudiero, R., Capasso C., Carginale, V., Riggio, M., Capasso, A., Ciaramella, M., Filosa S. & Parisi, E. (1997). PCR amplification and cloning of metallothionein complementary DNAs in temperate and Antarctic sea urchin characterized by a large difference in egg metallothionein content. Cellular and Molecular Life Science, 53, 472-477.
Sea Urchin Sequencing Consortium. (2006). The Genome of the Sea Urchin Strongylocentrotus purpuratus. Science, 314, 941-952.
Serafim, M .A., Company, R. M., Bebianno, M. J., & Langston, W. J. (2002). Effect of temperature and size on metallothionein synthesis in the gills of Mytilus galloprovincialis exposed to cadmium. Marine Environmental Research, 54, 361-365.
Silva, J. R. M. C., & Peck, L. (2000). Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler, 1906) at 0 °C. Polar Biology, 23, 225-230.
Silva, J. R. M. C., Hernandez-Blazquez, F. J., & Barbieri, R. L. (1998). Induced inflammatory response in the antarctic fish Nothothenia neglecta. Polar Biology, 20, 206-212.
Silva, J. R. M. C., Hernandez-Blazquez, F. J., Porto-Neto, L. R., & Borges, J. C. S. (2001). Comparative study of in vivo and in vitro phagocytosis including germicida capacity in Odontaster validus (Koehler, 1906) at 0 °C. Journal of Invertebrate Pathology, 77,180-185.
Smith, L. C., Ghosh, J., Buckley, K. M., Clow, L. A., Dheilly, N. M., Haug, T., Henson J.H., Li C., Lun C.M., Majeske A.J., Matranga V., Nair S.V., Rast J.P., Raftos D.A., Roth M., Sacchi S., Schrankel C.S. & Stensvåg, K. (2010). Echinoderm immunity. Advances in Experimental Medicine and Biology, 708, 260-301.
Smith, L. C., Rast, J. P., Brocton, V., Terwilleger, D. P., Nair, S. V., Bucley, K. M., & Majestke, A. J. (2006). The sea urchin immune system. Invertebrate Survival Journal, 3, 25–39.
Terwilliger, D.P., Buckley, K.M., Brockton, V., Ritter, N.J., & Smith, L.C. (2007). Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, b-1, 3-glucan, and dsRNA. BMC Molecular Biology, 8, 1-16.
Thomas, C. J., Kapoor, M., Sharma, S., Bausinger, H., Zyilan, U., Lipsker, D., Hanau D. & Surolia, A. (2002). Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Letter, 531, 184-188.
Tian, Y., Jain, S., Kelemen, S .E., & Autieri, M. V. (2009). AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis. American Journal of Physiology-Cell Physiology, 296, 256-266.
Van Cleef-Toedt, K. A., Kapla, L. A., & Crivello, J. F. (2001). Killifish metallothionein messenger RNA express on following temperature perturbation and cadmium exposure. Cell Stress and Chaperones, 4, 351-359.
Venier, P., Varotto, L., Rosani, U., Millino, C., Celegato, B., Bernante, F., Lanfranchi G., Novoa B., Roch P., Figueras A. & Pallavicini, A. (2011). Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics, 12, 69.
Weiss, J. (2003). Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defense against Gram-negative bacteria. Biochemical Society Transactions, 31, 785-790.
Yang, Z. F., Ho, D. W., Lau, C. K., Lam, C. T., Lum, C. T., Poon, R. T., & Fan, S. T. (2005). Allograft inflammatory factor-1 (AIF-1) is crucial for the survival and pro-inflammatory activity of macrophages. International Immunology, 17, 1391-1397.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2015 Revista de Biología Tropical