Abstract

The genus Bathypterois (tripod fish) comprises 19 species of deep-sea fishes distributed worldwide. The biology and distribution of the species of this genus are relatively poorly known throughout the Eastern Central Pacific (ECP). This work aims to update the geographic and bathymetric distribution of species of Bathypterois throughout the ECP. To describe the influence of depth, temperature and dissolved oxygen concentrations (DO) on latitudinal and depth distribution of members of the genus throughout the Mexican Pacific, 51 specimens of B. atricolor (12 trawls) and 112 of B. ventralis (18 trawls), collected during TALUD project, were analyzed. Bathypterois atricolor had broader environmental niches (depth: 0.47, temperature: 0.46, DO: 0.39), and inhabits deeper and colder sites (Electivity positives: > 1 000 m, < 3.2 °C, 1.0-1.62 mL/L) than B. ventralis, which had narrow environmental niches (depth: 0.34, temperature: 0.32, DO: 0.28), with high affinity to warmer sites and lower DO concentrations (Electivity positives: 778-1 400 m, 3.3-5.8 °C, < 1.0 mL/L). Both species used different environmental strata (niche overlap; depth: 0.34, temperature: 0.32, DO: 0.28). The adaptation of B. atricolor to live in a broad range of DO concentrations explains its almost circumglobal distribution, while B. ventralis lives almost permanently in the Oxygen Minimum Zone (< 0.05 mL/L), so the DO could be a limiting factor, reducing its potential geographic and bathymetric distributions. None of these species had been previously recorded in the central Gulf of California, and B. ventralis had not been recorded along the West coast of Baja California. This study confirms that both species have a continuous distribution within the ECP, our new records extended the known northernmost range for B. atricolor by 886 km (from 22°46' N to 30°45’ N) and for B. ventralis by 645 km (from 21°18’ N to 27°07’ N).
Keywords: TALUD project, Mexican Pacific, environmental factors, tripod fish, environmental niche, univariate and multivariate approaches, distribution.