de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Genetic tracing of farmed shrimp (Decapoda, Penaeidae) in wild populations from a main aquaculture region in Mexico

Ricardo Perez-Enriquez, Jesús A. Medina-Espinoza, Adriana Max-Aguilar, César J. Saucedo-Barrón



Release or escapes of aquaculture organisms may impact the genetic composition and variability of wild populations, leading to diverse issues that may compromise long-term wild stock fitness. Therefore, it is relevant to determine if farmed stocks are currently interacting with wild populations. Shrimp farming is an aquaculture activity taking place along the tropical Pacific coast of the Americas, and represents the most important culture bussiness of Northwestern Mexico. In this study, wild and farmed whiteleg shrimp Litopenaeus vannamei from the State of Sinaloa were genetically evaluated to determine admixture levels. A newly developed set of 14 microsatellite markers (mean number of alleles per locus 11.8, and 0.836 expected heterozygosity) was obtained by Next Generation Sequencing to characterize samples. Sampling consisted of 32 wild shrimps collected during three years (2002, 2012, and 2013) and three different sites, and two hatchery stocks from 2007. No significant differences were observed among years in the wild samples, but cluster analyses showed that hatchery-produced individuals were different from wild specimens. Deviations from Hardy-Weinberg Equilibrium and genotype assignment tests indicated that a fraction from each sample could contain individuals from hatchery origin. Even though the estimated fraction of escaped farmed individuals in the most recent samples (2012-2013; mean = 7.1 %) is considered of low genetic risk, management recommendations for hatcheries and farms were provided. Besides, the reasons that explain the intended and unintended farmed shrimp release into the wild were discussed.


genetic diversity; genetic impact; microsatellites; release; Litopenaeus vannamei


Aguirre-Pabón, J. C., Orozco-Berdugo, G. Jr., & Narváez-Barandica, J. C. (2015). Genetic status, source and establishment risk of the giant tiger shrimp (Penaeidae: Penaeus monodon), an invasive species in Colombian Caribbean waters. Acta Biológica Colombiana, 20, 117-127.

Asociación Nacional de Productores de Larva de Camarón, A.C. (ANPLAC). (2016). Participación de laboratorios productores de postlarvas en el ciclo de producción de camarón en México 2015. Panorama Acuícola Magazine, 21, 59.

Bierne, N., Bezuart, I., Vonau, V., Bonhomme, F., Bédier E., & AQUACOP. (2000). Microsatellite associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris. Aquaculture, 184, 203-219.

Blanco Gonzalez, E., Aritaki, M., Knutsen, H., & Taniguchi, N. (2015). Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan. PLoS ONE 10(5), e0125743.

Blanco Gonzalez, E., Nagasawa, K., & Umino, T. (2008). Stock enhancement program for black sea bream (Acanthopagrus schlegelii) in Hiroshima Bay: monitoring the genetic effects. Aquaculture, 276, 36-43.

Borrell, Y. J., Arias-Pérez, A., Freire, R., Valdés, A., Sánchez, J. A., Méndez, J., Martínez, D., López, J., Carleos, C., Blanco, G., & Insua, A. M. (2014). Microsatellites and multiplex PCRs for assessing aquaculture practices of the grooved carpet shell Ruditapes decussatus in Spain. Aquaculture, 426-427, 49-59.

Brown, C., Miltiadou, D., & Tsigenopoulos, C. S. (2015). Prevalence and survival of escaped European seabass Dicentrarchus labrax in Cyprus identified using genetic markers. Aquaculture Environment Interactions, 7, 49-59.

Bylemans, J., Maes, G. E., Diopere, E., Cariani, A., Senn, H., Taylor, M. I., Heylar, S., Bargelloni, L., Bonaldo, A., Carvalho, G., Guarniero, I., Komen, H., Martinsohn, J. T., Nielsen, E. E., Tinti, F., Volckaert, F. A. M., & Ogden, R. (2016). Evaluating genetic traceability methods for captive-bred marine fish and their applications in fisheries management and wildlife forensics. Aquaculture Environment Interactions, 8, 131-145.

Comisión Nacional de Acuacultura y Pesca (CONAPESCA). (2013). Anuario Estadístico de Acuacultura y Pesca, Edición 2013. Comisión Nacional de Acuacultura y Pesca. Mazatlán, Sinaloa, México.

Danancher, D., & Garcia-Vazquez, E. (2011). Genetic population structure in flatfishes and potential impact of aquaculture and stock enhancement on wild populations in Europe. Reviews in Fish Biology and Fisheries, 21, 441-462.

De Donato, M., Manrique, R., Ramírez, R., Mayer, L., & Howell, C. (2005). Mass selection and inbreeding effects on a cultivated strain of Penaeus (Litopenaeus) vannamei in Venezuela. Aquaculture, 247, 159-167.

Earl, D. A., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.

Evans, B., Bartlett, J., Sweijd, N., Cook, P., & Elliott, N. G. (2004). Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture, 233, 109-127.

Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.

FAO. (1993). Report of the Expert Consultation on utilization and conservation of aquatic genetic resources. Grotaferrata, Italy, 9-13 November 1992. FAO Fisheries Report 491.

Freitas, P. D., & Galetti, P. M. Jr. (2005). Assessment of the genetic diversity in five generations of a commercial broodstock line of Litopenaeus vannamei shrimp. African Journal of Biotechnology, 4, 1362-1367.

Glover, K. A., Dahle, G., & Jørstad, K. E. (2011). Genetic identification of farmed and wild Atlantic cod, Gadus morhua, in coastal Norway. ICES Journal of Marine Science, 68, 901-910.

Glover, K. A., Quintela, M., Wennevik, V., Besnier, F., Sørvik, A. G. E., & Skaala, Ø. (2012). Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic Salmon population genetic structure throughout Norway. PLoS ONE, 7, e43129.

Goyard, E., Goarant, C., Ansquer, D., Brun, P., de Decker, S., Dufour, R., Galinié, C., Peignon, J. M., Pham, D., Vourey, E., Harache, Y., & Patrois, J. (2008). Cross breeding of different domesticated lines as a simple way for genetic improvement in small aquaculture industries: Heterosis and inbreeding effects on growth and survival rates of the Pacific blue shrimp Penaeus (Litopenaeus) stylirostris. Aquaculture, 278, 43-50.

Habtemariam, B. T., Arias, A., García-Vázquez, E., & Borrell, Y. J. (2015). Impacts of supplementation aquaculture on the genetic diversity of wild Ruditapes decussatus from northern Spain. Aquaculture Environment Interactions, 6, 241-254.

Hallerman, E. M., Brown, B., & Epifanio, J. (2003). An overview of classical and molecular genetics. In: E. M. Hallerman (Ed.). Population genetics: Principles and applications for fisheries scientists. (pp. 3-20). American Fisheries Society, Bethesda, Maryland.

Hamasaki, K., & Kitada, S. (2006). A review of kuruma prawn Penaeus japonicus stock enhancement in Japan. Fisheries Research, 80, 80-90.

Hartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. 3rd Ed. Sinnauer Associates, Inc.

Jacq, C., Ødegård, J., Bentsen, H. B., & Gjerde, B. (2011). A review of genetic influences of escaped farmed Atlantic salmon on wild Atlantic salmon populations. Nofima, Tromso, Norway. Retrieved from

Keys, S. J., Crocos, P. J., Burridge, C. Y., Coman, G. J., Davis, G. P., & Preston, N. P. (2004). Comparative growth and survival of inbred and outbred Penaeus (Marsupenaeus) japonicus, reared under controlled environment conditions: indications of inbreeding depression. Aquaculture, 241, 151-168.

Kitada, S., Shishidou, H., Sugaya, T., Kitakado, T., Hamasaki, K., & Kishino, H. (2009). Genetic effects of long-term stock enhancement programs. Aquaculture, 290, 69-79.

Knibb, W., Whatmore, P., Lamont, R., Quinn, J., Powell, D., Elizur, A., Anderson, T., Remilton, C., & Nguyen, N. H. (2014). Can genetic diversity be maintained in long term mass selected populations without pedigree information? - a case study using banana shrimp Fenneropenaeus merguiensis. Aquaculture, 428-429, 71-78.

Laikre, L., Schwartz, M. K., Waples, R. S., Ryman, N., & The GeM Working Group. (2010). Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends in Ecology and Evolution, 25, 520-529

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.

McGinnity, P., Prodohl, P., Ferguson, K., Hynes, R., O’Maoileidigh, N., Baker, N., Cotter, D., O’Hea, B., Cooke, D., Rogan, G., Taggart, J., & Cross, T. (2003). Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society of London B Biological Sciences, 270, 2443-2450.

Meglécz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., & Martin, J. F. (2010). QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics, 26, 403-404.

Mendoza-Cano, F., Grijalva-Chon, J. M., Perez-Enriquez, R., Ramos-Paredes, J., & Varela-Romero, A. (2013). Genetic diversity of mitochondrial DNA from Litopenaeus vannamei broodstock used in northwestern Mexico. Ciencias Marinas, 39, 401-412.

Miller, M. R., & Kapuscinsky, A. R. (2003). Genetic Guidelines for hatchery supplementation programs. In E. M. Hallerman (Ed.). Population genetics: principles and applications for fisheries scientists. (pp. 329-355). American Fisheries Society, Bethesda, Maryland.

Morvezen, R., Charrier, G., Boudry, P., Chauvaud, L., Breton, F., Strand, Ø., & Laroche, J. (2016). Genetic structure of a commercially exploited bivalve, the great scallop Pecten maximus, along the European coasts. Conservation Genetics, 17, 57-67.

Moss, D. R., Arce, S. M., Otoshi, C. A., Doyle, R. W., & Moss, S. M. (2007). Effects of inbreeding on survival and growth of Pacific White shrimp Penaeus (Litopenaeus) vannamei. Aquaculture, 272 S, S30-S37.

Nakajima, K., Kitada, S., Habara, Y., Sano, S., Yokoyama, E., Sugaya, T., Iwamoto, A., Hishino, H., & Hamasaki, K. (2014). Genetic effects of marine stock enhancement: a case study based on the highly piscivorous Japanese Spanish mackerel. Canadian Journal of Fisheries and Aquatic Sciences, 71, 1-14.

Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28, 2537-2539.

Perez-Enriquez, R., Hernández-Martínez, F., & Cruz, P. (2009). Genetic diversity status of White shrimp Penaeus (Litopenaeus) vannamei broodstock in Mexico. Aquaculture, 297, 44-50.

Perez-Enriquez, R., & Max-Aguilar A. (2016). Pedigree traceability in whiteleg shrimp (Litopenaeus vannamei) using genetic markers: A comparison between microsatellites and SNPs. Ciencias Marinas, 42, 227-235.

Perez-Enriquez, R., Takagi, M., & Taniguchi, N. (1999). Genetic variability of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture, 173, 413-423.

Perez-Enriquez, R., Takemura, M., Tabata, K., & Taniguchi, N. (2001). Genetic diversity of red sea bream Pagrus major in western Japan in relation to stock enhancement. Fisheries Science, 67, 71-78.

Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: Causes, consequences and solutions. Nature Reviews Genetics, 6, 847-859.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 41, 223-235

Rozen, S., & Skaletsky, H. (2000). Primer3 on the www for general users and for biologist programmers. In: S. Misener, & S. A. Krawetz (Eds.). Methods in Molecular Biology. Humana Press, Totowa, NJ.

Šegvić-Bubić, T., Lepen, I., Trumbić, Ž., Ljubković, J., Sutlović, D., Matić-Skoko, S., Grubišić, L., Glamuzina, B., & Mladineo, I. (2011). Population genetic structure of reared and wild gilthead sea bream (Sparus aurata) in the Adriatic Sea inferred with microsatellite loci. Aquaculture, 318, 309-315.

Senanan, W., Tangkrock-Olan, N., Panutrakul, S., Barnette, P., Wongwiwatanawute, C., Niphonkit, N., & Anderson, J.D. (2007). The presence of the Pacific whiteleg shrimp (Litopenaeus vannamei, Boone, 1931) in the wild in Thailand. Journal of Shellfish Research, 26, 1187-1192.

Sunden, S. L. F., & Davis, S. K. (1991). Evaluation of genetic variation in domestic population of Penaeus vannamei (Boone): a comparison with three natural populations. Aquaculture, 97, 131-142.

Svåsand, T., Crosetti, D., García-Vázquez, E., & Verspoor, E. (2007). Genetic impact of aquaculture activities on native populations. Genimpact final scientific report (EU contract n. RICA-CT-2005-022802). 176 p. Retrieved from

Taniguchi, N. (2004). Broodstock management for stock enhancement programs of marine fish with assistance of DNA marker (a review). In: K. M. Leber, S. Kitada, H. L. Blankenship, & T. Svåsand (Eds.). Stock enhancement and sea ranching. Developments, pitfalls and opportunities. (pp. 329-338). Blackwell Publishing, Oxford, UK.

Taranger, G. L., Karlsen, Ø., Bannister, R. J., Glover, K. A., Husa, V., Karlsbakk, E., Kvamme, B. O., Boxaspen, K. K., Bjørn, P. A., Finstad, B., Madhun, A. S., Morton, H. C., & Svåsand, T. (2015). Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES Journal of Marine Science, 72, 997-1021.

Tassanakajon, A., Pongsomboon, S., Jarayabhand, P., Klinbunga, S., & Boonsaeng, V. (1998). Genetic structure in wild populations of black tiger shrimp Penaeus monodon using randomly amplified polymorphic DNA analysis. Journal of Marine Biotechnology, 6, 249-254.

Utter, F. (2003). Genetic impacts of fish introductions. In: E. M. Hallerman (Ed.). Population genetics, principles and applications for fisheries scientists. (pp. 357-378). American Fisheries Society, Bethesda, MD.

Valles-Jiménez, R., Cruz, P., & Perez-Enriquez, R. (2005). Population genetic structure of Pacific White shrimp (Litopenaeus vannamei) from Mexico to Panama: microsatellite DNA variation. Marine Biotechnology, 6, 475-484.

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538.

Vela Avitúa, S., Montaldo, H. H., Márquez-Valdelamar, L., Campos-Montes, G. R., & Castillo-Juárez, H. (2013). Decline of genetic variability in a captive population of Pacific white shrimp Penaeus (Litopenaeus) vannamei using microsatellite and pedigree information. Electronic Journal of Biotechnology, 16(4), DOI: 10.2225/vol16-issue4-fulltext-11

Wang, Q., Zhuang, Z., Deng, J., & Ye, Y. (2006). Stock enhancement and translocation of the shrimp Penaeus chinensis in China. Fisheries Research, 80, 67-79.

Xu, Z., Primavera, J. H., de la Pena, L. D., Pettit, P., Belak, J., & Alcivar-Warren, A. (2001). Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in The Philippines using microsatellites. Aquaculture, 199, 13-40.


  • There are currently no refbacks.

© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: