Abstract
In many parts of the world, forestry objectives are now shifting from focusing on maximum production to a wider perspective that includes biodiversity preservation and ecosystem functioning. To achieve these targets, managers are increasingly designing cutting regimes that imitate natural disturbances, with the aim of generating a more naturally structured forest. In many old-growth forests, tree fall gaps caused by tree death constitute the dominant type of disturbance. The application of gap dynamics theory appears to be a promising option for tropical forest management and conservation. In the present study of a tree species-rich and old-growth Ecuadorian Neotropical forest, we assessed the spatial distribution of gaps and gap size in relation to: i) tree number at the gap edge, ii) number of tree species at the gap edge, iii) number of tree species per stem at the gap edge, iv) species similarity, v) species evenness at the gap edge, vi) size differentiation at the gap edge, vii) gap isolation and viii) species mingling at the gap edge. Understanding natural gap processes in these forests is crucial for establishing new forestry practices in these forests to mimic natural processes of disturbance. Our results demonstrated that the spatial distribution of gaps was random. Various gap attributes were strongly associated with gap size. The number of tree species per stem at the gap edge was negatively correlated to the gap size. Gap sizes up to 50 m2 were mostly sufficient to generate tree species-rich forest stands. Assuming that our results were representative for an old-growth neotropical rainforest in Ecuador, our study remarks the following management recommendations: 1) Rainforests have a very complex spatial and diversity structure and logging activities should preferably be omitted because of adverse effects. 2) If logging is inevitable, this should mimic a random choice of trees and tree species, to prevent special selection of tree dimension and species; and a random distribution of trees to be logged, to produce gaps smaller than 50 m2 and never larger than 400 m2. Additionally, we suggest cutting not more than 5 % of the tree biomass per 10-20 years period, to preclude stronger alterations of ecosystem processes, and the reduction of existing dead wood from the ecosystem.
References
Arriaga, L. (1988). Gap dynamics of a tropical cloud forest in northeastern Mexico. Biotropica, 20(3), 178-184.
Bass, M. S., Finer, M., Jenkins, C. N., Kreft, H., Cisneros-Heredia, D. F., McCracken, S. F., ... & Di Fiore, A. (2010). Global conservation significance of Ecuador's Yasuní National Park. PloS One, 5(1), e8767.
Bodenhofer, U., Kothmeier, A., & Hochreiter, S. (2011). APCluster: an R package for affinity propagation clustering. Bioinformatics, 27(17), 2463-2464.
Brokaw, N. V. (1982). The definition of treefall gap and its effect on measures of forest dynamics. Biotropica, 14(2), 158-160.
Brokaw, N. V. (1985). Gap‐phase regeneration in a tropical forest. Ecology, 66(3), 682-687.
Brokaw, N., & Busing, R. T. (2000). Niche versus chance and tree diversity in forest gaps. Trends in Ecology & Evolution, 15(5), 183-188.
Canham, C. D. (1989). Different Responses to Gaps among Shade-Tollerant Tree Species. Ecology, 70(3), 548-550.
Cañadas, L. (1983). El mapa bioclimático y ecológico del Ecuador. Ltda., Quito-Ecuador: Editores Asociados Cía.
Cañadas, Á. (2005). Providing information about natural resources as a base to support the decentralization of the forest sector in Canton Loreto-Ecuador. Göttingen, Germany: Forschungszentrum Waldökosysteme.
Cressie, N. A. C. (1993). Statistics for Spatial Data, Revised Edition. Hoboken, NJ, USA: John Wiley & Sons, Inc.
Dam, O. V. (2001). Forest filled with gaps: effects of gap size on water and nutrient cycling in tropical rain forest: a study in Guyana (Doctoral dissertation). Utrecht University Repository.
Dubé, P., Fortin, M. J., Canham, C. D., & Marceau, D. J. (2001). Quantifying gap dynamics at the patch mosaic level using a spatially-explicit model of a northern hardwood forest ecosystem. Ecological Modelling, 142(1), 39-60.
Everitt, B. S., & Dunn, G. (2001). Applied multivariate data analysis. London, Arnold: Oxford University Press.
Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972-976.
Gadow, Kv. (2003). Waldstruktur und Wachstum. Beilage zur Vorlesung. Göttingen, Germany: Uni. Göttingen.
Gadow, K. V., Zhang, C. Y., Wehenkel, C., Pommerening, A., Corral-Rivas, J., Korol, M., ... & Zhao, X. H. (2012). Forest structure and diversity. In T. Pukkala & K. V. Gadow (Eds.), Continuous cover forestry (pp. 29-83). Netherlands: Springer.
García-Domingo, J. L., & Saldana, J. (2013). A pair-approximation model for spatial patterns in tree populations with asymmetrical resource competition. Mathematical Population Studies, 20(4), 175-191.
Getzin, S., Wiegand, T., Wiegand, K., & He, F. (2008). Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96(4), 807-820.
Gregorius, H. R. (2001). The notion of stability in open dynamical systems from an ecological perspective. International Journal of General System, 30(3), 347-378.
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
Hubbell, S. P., Foster, R. B., O'Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., & De Lao, S. L. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554-557.
Kennedy, T. A., Naeem, S., Howe, K. M., Knops, J. M., Tilman, D., & Reich, P. (2002). Biodiversity as a barrier to ecological invasion. Nature, 417(6889), 636-638.
Kukkonen, M., Rita, H., Hohnwald, S., & Nygren, A. (2008). Treefall gaps of certified, conventionally managed and natural forests as regeneration sites for Neotropical timber trees in northern Honduras. Forest Ecology and Management, 255(7), 2163-2176.
Legendre, P., & Legendre, L. (2012). Numerical ecology. Developments in environmental modelling (3th edition). Amsterdam: Elsevier Science Ltd.
Lepš, J., & Kindlmann, P. (1987). Models of the development of spatial pattern of an even-aged plant population over time. Ecological Modelling, 39(1), 45-57.
Muth, C. C., & Bazzaz, F. A. (2002). Tree canopy displacement at forest gap edges. Canadian Journal of Forest Research, 32(2), 247-254.
Polit, D. F. (1996). Data analysis & statistics for nursing research. New York: Appleton & Lange.
Poorter, L., Jans, L., Bongers, F., & Van Rompaey, R. S. (1994). Spatial distribution of gaps along three catenas in the moist forest of Tai National Park, Ivory Coast. Journal of Tropical Ecology, 10(03), 385-398.
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
Rousseau, T., & Van Hecke, P. (1999) Measuring biodiversity. Acta Biothepretica, 47, 1-5.
Salvador-Van Eysenrode, D., Bogaert, J., Zak-Mnacek, V., & Ceulemans, R. (2003). Sapling diversity in canopy gaps in an Ecuadorian rainforest. Forest Science, 49(6), 909-917.
Sanford, R. L., Braker, H. E., & Hartshorn, G. S. (1986). Canopy openings in a primary Neotropical lowland forest. Journal of Tropical Ecology, 2(03), 277-282.
Schliemann, S. A., & Bockheim, J. G. (2011). Methods for studying treefall gaps: a review. Forest Ecology and Management, 261(7), 1143-1151.
Svenning, J. C. (2000). Small Canopy Gaps Influence Plant Distributions in the Rain Forest Understory. Biotropica, 32(2), 252-261.
Unger, M., Homeier, J., & Leuschner, C. (2012). Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170(1), 263-274.
Van der Meer, P. J., & Bongers, F. (1996). Formation and closure of canopy gaps in the rain forest at Nouragues, French Guiana. Vegetatio, 126(2), 167-179.
Vilčko F. (2003). Grid 2 - Simulation. Institut für Waldinventur und Waldwachstum [software]. Göttingen: Uni. Göttingen.
Watt, A. S. (1947). Pattern and process in the plant community. Journal of Ecology, 35(1/2), 1-22.
Wehenkel, C., Brazão-Protázio, J. M., Carrillo-Parra, A., Martínez-Guerrero, J. H., & Crecente-Campo, F. (2015). Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico). PloS One, 10(10), e0140442.
Wehenkel, C., Corral-Rivas, J. J., & Gadow, K. V. (2014). Quantifying differences between ecosystems with particular reference to selection forests in Durango/Mexico. Forest Ecology and Management, 316, 117-124.
Wehenkel, C., Corral-Rivas, J. J., Hernández-Díaz, J. C., & von Gadow, K. (2011). Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico. Annals of Forest Science, 68(2), 385-394.
Weiner, J., & Solbrig, O. T. (1984). The meaning and measurement of size hierarchies in plant populations. Oecologia, 61(3), 334-336.
Welden, C. W., Hewett, S. W., Hubbell, S. P., & Foster, R. B. (1991). Sapling survival, growth, and recruitment: relationship to canopy height in a Neotropical forest. Ecology, 72(1), 35-50.
Whitmore, T. C. (1989). Canopy gaps and the two major groups of forest trees. Ecology, 70, 536-538.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical