Abstract
Jatropha spp. plants are used in traditional medicine, food and for the elaboration of biofuel. The Tehuacán-Cuicatlán Biosphere Reserve in México holds genetic richness and endemism for this genus, but the specific use of the plants and the seed chemical profiles are still unknown. The objectives of this research were to record the traditional forms of use of Jatropha species, and to analyze the chemical composition of Jatropha spp. seeds. For this, a semi-structured survey was conducted in 15 towns, and 20 interviews were applied in each one between May and August 2012. Data allowed to estimate the Significant Use Level and Relative Use Value per species. Besides, seeds from J. neopauciflora, J. rufescens, and J. rzedowskii were collected between August and October 2013, and to seed flour samples we determined total lipids by the Soxhlet method, crude protein by the Kjendahl method, and ashes according to AOAC methods; fatty acid profile and phorbol esters were determined by gas chromatography and by HPLC, respectively. We recorded that the species J. neopauciflora, J. oaxacana, J. rufescens, J. ciliata, and J. rzedowskii, are used as traditional medicine, food, and ornaments, except for J. ciliata, for which none use was recorded. The Significant Use Level as food was found not significant, but for medicinal purposes, J. neopauciflora obtained the highest Relative Use Value (9.0 %). The latex is used to treat 13 disorders, including dental problems (toothache, sensitivity, caries), oral diseases (oral herpes, gingivitis, and oral candidiasis) with a Significant Use Level of 32.9 %; it is also used as a hemostatic. The protein content among species varied from 23.37 to 26.06 %, and total lipids from 34.79 to 36.60 %. The principal unsaturated fatty acids were oleic (25.08 to 30.09 %) and linoleic (44.55 to 48.46 %), and the saturated fatty acids were palmitic (10.11 to 16.50 %) and stearic (9.47 to 11.15 %). Phorbol esters, the main cause of seed’s toxicity, were absent in J. neopauciflora, J. rufescens, and J. rzedowskii. In conclusion, the Significant Use Level of Jatropha species studied was low, with little cultural acceptance and sporadic utilization. The Relative Use Value was important for medicinal purposes, especially for J. neopauciflora. The dehulled seeds of J. neopauciflora, J. rufescens, and J. rzedowskii are potentially useful as food, having high protein contents, and unsaturated oleic and linoleic fatty acids. With this study we report three non-toxic Jatropha species and recommend to scientifically validate the antimycotic use of J. neopauciflora latex.
References
Abdelgadir, H. A., & Staden J. V. (2013). Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): A review. South African Journal of Botany, 88, 204-218.
Agbogidi, O. M., Akparobi, S. O., & Eruotor, P. G. (2013). Health and environmental benefits of Jatropha curcas L. Applied Science Reports, 1, 36-39.
Aiyelaagbe, O. O., Adesogan, E. K., Ekundayo, O., & Adeniyi, B. A. (2000). The antimicrobial activity of roots of Jatropha podagrica (Hook). Phytotherapy Research, 14, 60-62.
Akbar, E., Yaakob, Z., Kamarudin, S.K., Ismail, M., & Salimon, J. (2009). Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. European Journal of Scientific Research, 29, 396-403.
Alexiades, M. (1996). Selected guidelines for: Ethnobotanical research: A field manual. New York: New York Botanical Garden.
Ankli, A., Sticher, O., & Heinrich, M. (1999). Medical ethnobotany of the Yucatec Maya: Healers’ consensus as a quantitative criterion. Economic Botany, 53, 144-160.
Association of Analytical Communities (AOAC). (1995). Official methods of analysis of the Association of Analytical Chemist (15th ed). Washington D.C.
Baraguey, C., Blond, A., Correia, I., Pousset, J. L., Bodo, B., & Auvin-Guette, C. (2000). Mahafacyclin A, a cyclic heptapeptide from Jatropha mahafalensis exhibiting β-bulge conformation. Tetrahedron Letters, 41, 325-329.
Bautista, R. E. (2010). Tolerancia a la desecación y caracterización química de semillas de piñón mexicano (Jatropha curcas L.) colectadas en el Totonacapan. Tesis de Maestría, Colegio de Postgraduados, México.
Bruni, A., Ballero, M., & Poli, F. (1997). Quantitative ethnopharmacological study of the Campidano valley and Urzulei district, Sardinia, Italy. Journal of Ethnopharmacology, 57, 97-124.
Bullangpoti, V., Khumrungsee, N., Pluempanupat, W., Kainoh, Y., & Saguanpong, U. (2011). Toxicity of ethyl acetate extract and ricinine from Jatropha gossypifolia senescent leaves against Spodoptera exigua Hubner (Lepidoptera: Noctuidae). Journal of Pesticide Science, 36, 260-263.
Canales, M., Hernández, T., Caballero, J., Romo de Vivar, A., Ávila, G., Duran, A., & Lira, R., (2005). Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. Journal of Ethnopharmacology, 97, 429-439.
Diario Oficial de la Federación (DOF). (1998). Decreto por el que se declara Área Natural Protegida, con el carácter de Reserva de la Biosfera, a la región denominada Tehuacán-Cuicatlán, ubicada en los estados de Oaxaca y Puebla. Estados Unidos Mexicanos: Presidencia de la República. Retrieved from http: http://www.dof.gob.mx/nota_detalle.php?codigo=4893340&fecha=18/09/1998
Escobedo-Martínez, C., Reyes-Ramírez, I. E., García-Arredondo, A., Rojas-Molina, A., & Enríquez, H. R. G. (2013). Estudios farmacológicos preliminares: actividad antioxidante y vasoconstrictora de extractos orgánicos provenientes de la planta medicinal Jatropha rzedowskii, colectada en la Reserva del Valle de Tehuacán-Cuicatlán. In: Memorias de la 9ª Reunión Internacional de Investigación en Productos Naturales. (p 147). México: Universidad Autónoma del Estado de Hidalgo.
Félix-Silva, J., Souza, T., Gomes-Camara, R. B., Cabral, B., Silva-Júnior, A. A., Moretti-Rebecchi, I. M., Zucolotto, S. M., Oliveira-Rocha, H. A., & Fernandes-Pedrosa, M. F. (2014). In vitro anticoagulant and antioxidant activities of Jatropha gossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications. Complementary and Alternative Medicine, 14, 405-418.
García, E. (1990). Climas, 1: 4000 000. IV.4.10 (A). Atlas Nacional de México, Volumen 2. México: Instituto de Geografía, UNAM.
Germosén-Robineau, L. (1995). Hacia una Farmacopea Vegetal Caribeña, Edición Tramil 7. Santo Domingo: Enda Caribe, UAG & Universidad de Antioquia.
Hamza, O. J. M., Van den Bout-Van den Beukel, C. J. P., Matee, M. I. N., Moshi, M. J., Mikx, F. H. M., Selemani, H. O., Mbwambo, Z. H., Van der Ven, A. J. A. M., & Verweij, P. E. (2006). Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. Journal of Ethnopharmacology, 108, 124-132.
Heller, J. (1996). Physic Nut Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops. 1. Rome: International Plant Genetic Resources Institute IPGRI. Retrieved from http://www.bioversityinternational.org/uploads/tx_news/Physic_nut__Jatropha_curcas_L._161.pdf
Hernández-Nicolás, N. Y., Córdova-Téllez, L., Romero-Manzanares A., Jiménez-Ramírez J., Lobato-Ortiz R., & Sánchez-Cuevas, J. A. (2015). Diagnóstico ecológico para la conservación de Jatropha spp. (Euphorbiaceae) y sus hábitats, en la Reserva Tehuacán-Cuicatlán, México. Revista de Biología Tropical, 63, 23-33.
Hidalgo-Báez, D., Ricard, M., Gaviria, J., & Estrada, J. (1999). Aportes a la etnofarmacología de los Páramos Venezolanos. Ciencia, 7, 23-32.
Kieling-Fröhlich, J., Forbrig-Froeder, A. L., Janovik, V., Pozzebon-Venturini, T., Picada- Pereira, R., Augusti-Boligon, A., Faccim de Brum, T., Hartz-Alves, S., Teixeira da Rocha, J.B., & Linde-Athayde, M. (2013). Antioxidant capacity, antimicrobial activity and triterpenes isolated from Jatropha isabellei Müll Arg. Natural Product Research, 27, 1049-1059.
Kumar A., & Sharma S. (2008). An evaluation of multipurpose oil seed crop for industrial
uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28, 1-10.
Maghuly, F., Jankowicz-Cieslak, S. P., Till, B. J., & Laimer, M. (2015). Geographic origin is not supported by the genetic variability found in a large living collection of Jatropha curcas with accessions from three continents. Biotechnology Journal, 10, 536-551.
Makkar, H. P. S., Aderibigbe, A. O., & Becker, K. (1998). Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chemistry, 62, 207-215.
Makkar, H. P. S., Kumar, V., Oyeleye, O. O., Akinleye, A. O., Angulo-Escalante, M., & Becker, K. (2011). Jatropha platyphylla, a new non-toxic Jatropha species: Physical properties and chemical constituents including toxic and antinutritional factors of seeds. Food Chemistry, 125, 63-71.
Makkar, H. P. S., Siddhuraju, P., & Becker, K. (2007). Plant secondary metabolites. Methods in molecular biology, 393. Totowa, NJ: Humana Press.
Martínez-Gordillo, M., Fernández-Casas, F. J., Jiménez-Ramírez, J., Ginez-Vázquez, L. D., & Vega-Flores, K. (2014). Euphorbiaceae Subfamilia Crotonoideae. In R. Medina-Lemos, Flora del Valle de Tehuacán-Cuicatlán (pp. 1-84). México: Instituto de Biología, Universidad Nacional Autónoma de México.
Martínez, G. M., Jiménez, R. J., Cruz, D. R., Juárez, A., García, R., Cervantes, A., & Mejía, H. R. (2002). Los géneros de la familia Euphorbiaceae en México. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, Serie Botánica, 73, 55-281.
Martínez, H. J., Martínez, A. A. L., Makkar, H., Francis, G., & Becker, K. (2010). Agroclimatic conditions, chemicals and nutritional characterization of different provenances of Jatropha curcas L. from México. European Journal Science Research, 39, 396-407.
Martínez-Herrera, J., Siddhuraju, P., Francis, G., Dávila-Ortíz, G., & Becker, K. (2006). Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chemistry, 96, 80-89.
Murray, S. (1988). Estadística (Segunda Edición). España: McGraw Hill, Madrid.
Oduola, T., Adeosun, G. O., Oduola, T. A., Avwioro, G. O., & Oyeniyi, M. A. (2005). Mechanism of action of Jatropha gossypifolia stem latex as a hemostatic agent. European Journal of General Medicine, 2, 140-143.
Osoniyi, O., & Onajobi, F. (2003). Coagulant and anticoagulant activities in Jatropha curcas latex. Journal of Ethnopharmacology, 89, 101-105.
Ovando-Medina, I., Espinosa-Garcia, F. J., Núñez-Farfan, J., & Salvador-Figueroa, M. (2011). Genetic variation in Mexican Jatropha curcas L. estimated with seed oil fatty acids. Journal of Oleo Science, 60, 301-311.
Popluechai, S., Breviario, D., Mulpuri, S., Makkar, H. P. S., Raorane, M., Reddy, A. R., Palchetti, E., Gatehouse, A.M.R., Keith, S. J., O’Donnell, A. G., & Kohli, A. (2009). Narrow genetic and apparent phenetic diversity in Jatropha curcas: Initial success with generating low phorbol ester interspecific hybrids. Nature Precedings. hdl:10101/npre.2009.2782.1 Posted 13 Jan 2009.
Reddy-Prasad, D. M., Izam, A., & Rahman-Khan, M. M. (2012). Jatropha curcas: Plant of medical benefits. Journal of Medicinal Plants Research, 6, 2691-2699.
Soto-León, S., López-Camacho, E., Milán-Carrillo, J., Sánchez-Castillo, M. A., Cuevas-Rodríguez, E., Picos-Corrales, L. A., & Contreras-Andrade, I. (2014). Jatropha cinerea seed oil as a potential non-conventional feedstock for biodiesel produced by an ultrasonic process. Revista Mexicana de Ingeniería Química, 13, 739-747.
Tunaru, S., Althoffa, T. F., Nüsingb, R. M., Dienerc, M., & Offermanns, S. (2012). Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proceedings of the National Academy of Sciences United States, 109, 9179-9184.
Webster, G. L. (1994). Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Annals of the Missouri Botanical Garden, 81, 33-144.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical