Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Seasonal variability of copepod community structure and abundance modified by the El Niño-La Niña transition (2010), Pacific, Mexico


mesoscale processes.
procesos de mesoescala.

How to Cite

Kozak, E. R., Olivos-Ortiz, A., Franco-Gordo, C., & Pelayo-Martínez, G. (2018). Seasonal variability of copepod community structure and abundance modified by the El Niño-La Niña transition (2010), Pacific, Mexico. Revista De Biología Tropical, 66(4), 1449–1468.


Copepods are an important planktonic group, and account for most of the total biomass and species diversity in pelagic marine ecosystems. Seasonal variability of the community structure of copepods in the Eastern tropical Pacific off central Mexico was studied during three distinct hydrodynamic periods in 2010 using statistical and multivariate analyses. The survey period included the second half of the 2009-2010 El Niño (January), the neutral transition period (May-June), and the first half of the 2010-2011 La Niña (October). Seventy-eight copepod species were identified; richness ranged from 11 to 47 species per station, with seasonal averages from 25 species in May to 35 species in January. Cluster analysis indicated that there were four principal groups present across the surveyed periods, defined by January (El Niño), October (La Niña), May offshore stations, and May upwelling stations (cyclonic eddy and coastal stations). There were no significant differences in abundance, but the January (El Niño) cluster was most diverse with 32 species, May offshore and October (La Niña) clusters each had 25 species, and the May upwelling was the least diverse cluster with 18 species. Mesoscale processes were strongest during May, which was the only period with a significant inshore-offshore gradient of species richness and diversity. Canonical correspondence analysis (CCA) revealed that variability was primarily driven by subsurface (75-200 m) ammonium, and surface (0-50 m) temperature, nitrates+nitrites, salinity and phosphorus. Copepodites and adults of the primarily herbivorous Eucalanidae dominated the stations of the upwelling cluster, while copepodites and adults of the carnivorous Euchaetidae dominated the January (El Niño) station cluster. The higher Chl a levels during the less productive (reduced upwelling) El Niño period were probably due to reduced grazing activities and increased ammonium availability through increased zooplankton metabolism. The horizontal distribution of copepods in the Eastern Tropical Pacific off Mexico appears to be principally defined by mesoscale eddy processes (offshore) and upwelling (coastal). These mesoscale processes were affected by El Niño - La Niña transitions, which subsequently disrupted the inshore-offshore gradient and in the case of El Niño likely caused reductions in copepod abundance across the entire region which persisted for the entire study period, and possibly longer.


Alcaraz, M., Saiz, E., & Estrada, M., (1994). Excretion of ammonia by zooplankton and its potential contribution to nitrogen requirements for primary production in the Catalan Sea (NW Mediterranean). Marine Biology, 119(1), 69-76.

Ambriz-Arreola, I., Gómez-Gutiérrez, J., del Carmen Franco-Gordo, M., Lavaniegos, B. E., & Godínez-Domínguez, E. (2012). Influence of coastal upwelling- downwelling variability on tropical euphausiid abundance and community structure in the inshore Mexican central Pacific. Marine Ecology Progress Series, 451, 119-136.

Ambriz-Arreola, I., Gómez-Gutiérrez, J., Franco-Gordo, C., & Kozak, E. R. (2015). Reproductive biology, embryo and early larval morphology, and development rates of krill (Euphausia lamelligera and Euphausia distinguenda), endemic to the Eastern Tropical Pacific. Sexuality and Early Development in Aquatic Organisms, 1(2), 143-161.

Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A., & Edwards, M., (2002). Reorganization of North Atlantic marine copepod biodiversity and climate. Science, 296(5573), 1692-1694.

Brinton, E., Fleminger, A., & Siegel-Causey, D. S. (1986). The temperate and tropical planktonic biotas of the Gulf of California. California Cooperative Oceanic Fisheries Investigations Report, 27, 228-266.

Cepeda-Morales, J., Beier, E., Gaxiola-Castro, G., Lavín, M. F., & Godínez, V. M. (2009). Effect of the oxygen minimum zone on the second chlorophyll maximum in the Eastern Tropical Pacific off Mexico. Ciencias Marinas, 35(4), 389-403.

Chen, Y. Q. (1986). The vertical distribution of some pelagic copepods in the eastern tropical Pacific. California Cooperative Oceanic Fisheries Investigations Report, 27, 205-227.

Collins, M., An, S. I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F. F., ... Vecchi, G. (2010). The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3(6), 391.

Corner, E. D. S., & Newell, B. S. (1967). On the nutrition and metabolism of zooplankton IV. The forms of nitrogen excreted by Calanus. Journal of the Marine Biological Association of the United Kingdom, 47(1), 113-120.

Cruz-Hernández, J., Sánchez-Velasco, L., Godínez, V. M., Beier, E., Palomares-García, J. R., Barton, E. D., & Santamaría-Del-Ángel, E. (2018). Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California. Crustaceana, 91(1), 63-84.

Davies, S. M., Sánchez-Velasco, L., Beier, E., Godínez, V. M., Barton, E. D., & Tamayo, A. (2015). Three-dimensional distribution of larval fish habitats in the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 101, 118-129.

Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345-366.

Franco-Gordo, C., Ambriz-Arreola, I., Kozak, E. R., Gomez-Gutierrez, J., Plascencia-Palomera, V., Godinez-Dominguez, E., & Hinojosa-Larios, A. (2015). Seasonal succession of zooplankton taxonomic group assemblages in surface waters of Bahia de Navidad, Mexico (November 2010-December 2011). Hidrobiológica, 25(3), 335-345.

Godínez, V. M., Beier, E., Lavín, M. F., & Kurczyn, J. A. (2010). Circulation at the entrance of the Gulf of California from satellite altimeter and hydrographic observations. Journal of Geophysical Research: Oceans, 115(C4).

Gómez-Valdivia, F., Parés-Sierra, A., & Flores-Morales, A. L. (2015). The Mexican Coastal Current: A subsurface seasonal bridge that connects the tropical and subtropical Northeastern Pacific. Continental Shelf Research, 110, 100-107.

Grasshoff, K., Kremling, K., & Ehrhardt, M. (1983). Methods of seawater analysis. Weinheim, Germany: Verlag Chemie.

Griffiths, F. B., Fleminger, A., Kimor, B., & Vannucci, M. (1976). Shipboard and curating techiniques. In H. F. Steedman (Ed.), Zooplankton fixation and preservation - monographs on oceanographics methodology (pp. 17-19). Paris, France: UNESCO.

Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., & Huntley, M. (Eds.). (2000). ICES zooplankton methodology manual. Jamestown Road, London: Academic Press.

Jiménez-Pérez, L. C. (2016). Copepod community structure in Bahia de Banderas during the 2008-2009 La Nina and their transition to the 2009-2010 El Nino. Revista Bio Ciencias, 4(2), 82-103.

Jiménez-Pérez, L. C., & Lavaniegos, B. E. (2004). Changes in dominance of copepods off Baja California during the 1997-1999 El Niño and La Niña. Marine Ecology Progress Series, 277, 147-165.

Kessler, W. S., (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2), 181-217.

Kozak, E. R., Franco-Gordo, C., Palomares-García, R., Gómez-Gutiérrez, J., & Suárez-Morales, E. (2017). Annual egg production rates of calanoid copepod species on the continental shelf of the Eastern Tropical Pacific off Mexico. Estuarine, Coastal and Shelf Science, 184, 138-150.

Kozak, E. R., Franco-Gordo, C., Suárez-Morales, E., & Palomares-García, R. (2014). Seasonal and interannual variability of the calanoid copepod community structure in shelf waters of the Eastern Tropical Pacific. Marine Ecology Progress Series, 507, 95-110.

Kurczyn, J. A., Beier, E., Lavín, M. F., & Chaigneau, A. (2012). Mesoscale eddies in the northeastern Pacific tropical‐subtropical transition zone: Statistical characterization from satellite altimetry. Journal of Geophysical Research: Oceans, 117(C10).

Lavín, M. F., Beier, E., Gómez‐Valdés, J., Godínez, V. M., & García, J. (2006). On the summer poleward coastal current off SW México. Geophysical Research Letters, 33(2), 1-4.

León‐Chávez, C. A., Beier, E., Sánchez‐Velasco, L., Barton, E. D., & Godínez, V. M. (2015). Role of circulation scales and water mass distributions on larval fish habitats in the Eastern Tropical Pacific off Mexico. Journal of Geophysical Research: Oceans, 120(6), 3987-4002.

León-Chávez, C. A., Sánchez-Velasco, L., Beier, E., Lavín, M. F., Godínez, V. M., & Färber-Lorda, J. (2010). Larval fish assemblages and circulation in the Eastern Tropical Pacific in Autumn and Winter. Journal of Plankton Research, 32(4), 397-410.

López-Ibarra, G. A., Hernandez-Trujillo, S., Bode, A., & Zetina-Rejon, M. J. (2014). Community structure of pelagic copepods in the eastern tropical Pacific Ocean during summer and autumn. Cahiers de Biologie Marine, 55, 453-462.

López-Sandoval, D. C., Lara-Lara, J. R., Lavín, M. F., Álvarez-Borrego, S., & Gaxiola-Castro, G. (2009). Primary productivity in the eastern tropical Pacific off Cabo Corrientes, Mexico. Ciencias Marinas, 35(2), 169-182.

McCune, B., & Mefford, M. J. (1999). PC-Ord. Multivariate Analysis of Ecological Data (Version 5.0). Gleneden Beach, Oregon, USA: MjM Software Design.

Palomares, R., Suárez, E., & Hernández-Trujillo, S. (1998). Catálogo de los copépodos (Crustacea) pelágicos del Pacífico Mexicano. México: CICIMAR/ECOSUR.

Pelayo-Martínez, G., Olivos-Ortiz, A., Franco-Gordo, C., Quijano-Scheggia, S., Gaviño-Rodríguez, J., Kono-Martínez, T., & Castro-Ochoa, F. (2017). Physical, chemical and zooplankton biomass variability (inshore-offshore) of Mexican Central Pacific during El Niño-La Niña 2010. Latin American Journal of Aquatic Research, 45(1), 67.

Portela, E., Beier, E., Barton, E. D., Castro, R., Godínez, V., Palacios-Hernández, E., … Trasviña, A. (2016). Water Masses and Circulation in the Tropical Pacific off Central Mexico and Surrounding Areas. Journal of Physical Oceanography, 46(10), 3069-3081.

Razouls, C., De Bovée, F., Kouwenberg, J., & Desreumaux, N. (2005-2017). Diversity and geographic distribution of marine planktonic copepods. Retrieved from http://

Rojo-Vázquez, J. A., Quiñonez-Velazquez, C., Echavarria-Heras, H. A., Lucano-Ramírez, G., Godínez-Domínguez, E., Ruiz-Ramírez, S., … Sosa-Nishizaki, O. (2008). The fish species composition and variation of catch from the small-scale gillnet fishery before, during and after the 1997-1998 ENSO event, central Mexican Pacific. Revista de Biología Tropical, 56(1), 133-152.

Salas, J., Gomis, D., Olivos-Ortiz, A., & García-Uribe, G. (2006). Seasonal hydrodinamical features on the continental shelf of Colima (west coast of Mexico). Scientia Marina, 70(4),719-26.

Siordia-Cermeño, M. P., Sánchez-Velasco, L., Sánchez-Ramírez, M., & Franco-Gordo, M. C. (2006). Variación temporal de la dieta de larvas de Bregmaceros bathymaster (Pisces: Bregmacerotidae) en las costas de Jalisco y Colima, México, durante un ciclo anual (1996). Ciencias Marinas, 32(1a), 13-21.

Smith, P., & Richardson, S. (1977). Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Paper, 175, 1-100.

Strickland, J. D., & Parsons, T. R. (1972). A practical handbook for the sea water analysis. Ottawa, Canada: Bulletin Fisheries Research Board of Canada.

Talley, L. D., Pickard, G. L., Emery, W. J., & Swift, J. H. (2011). Descriptive Physical Oceanography: An Introduction. Boston, Massachusetts: Academic Press.

Torres-Orozco, E., Trasviña, A., Muhlia-Melo, A., & Ortega-García, S. (2005). Mesoscale dynamics and yellowfin tuna catches in the Mexican Pacific. Ciencias Marinas, 31(4), 671-683.

Zamudio, L., Hurlburt, H. E., Metzger, E. J., & Tilburg, C. E. (2007). Tropical wave‐induced oceanic eddies at Cabo Corrientes and the Maria Islands, Mexico. Journal of Geophysical Research: Oceans, 112(C5), 1-17.



Download data is not yet available.