Abstract
This research analyzed three green microalgae (Scenedesmus sp., Chlamydomonas sp., and Chlorella sp.) and two cyanobacteria (Synechocystis sp. as unicellular strain and Nostoc sp. as filamentous strain) native from Costa Rica to remove high concentrations of ammonium and phosphate. Cultures were exposed for 120 h to initial concentrations of 70 mgL-1 ammonium and 9 mgL-1 phosphate, under constant light intensity of 60 µmol m-2s-1. Chlorella sp. showed the highest growth rate, followed by Chlamydomonas sp. and the cyanobacteria Nostoc sp. In contrast, Scenedesmus sp. and Synechocystis sp. cultures grew less than the other ones. The highest percentage of ammonium removal was achieved with Chlorella sp. followed by Chlamydomonas sp. and Synechocystis sp., then Scenedesmus sp. and Nostoc sp. Microalgae removed totally the initial phosphate concentration within 72 h, while cyanobacteria Synechocystis sp. and Nostoc sp. removed phosphate partially. These microorganisms are promising for wastewater reclamation.References
Abalde, J., Cid, A., Fidalgo, P., Torres, E., & Herrero, C.
(1995). Microalgas: cultivos y aplicaciones. La Coru-
ña, Spain: Universidade Da Coruña.
Acién, F., Gómez-Serrano, C., Morales-Amaral, M., Fernández-Sevilla, J. & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a
contribution might it be to significant urban wastewater treatment? Applied Microbiological Biotechnology, 100, 9013-9022.
Ansari, A., Hussain, A., Nawar, A., Qayyum, M. & Ali, E.
(2017). Wastewater treatment by local microalgae
strains for CO2 sequestration and biofuel production.
Applied Water Sciences, 7, 4151-4158. DOI 10.1007/
s1320-017-0574-9
APHA, AWWA, WPCF (1992). Standard methods for the
examination of water and waste water (1995). Washington DC: American Public Health Association.
Aslan, S., & Karapinar, I. (2006). Bacth kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64-70.
Azov, Y., & Goldman, J. C. (1982). Free ammonia inhibition of algal photosynthesis in intensive culture.
Applied Environmental Microbiology, 43, 735-739.
Benemann, J. (1989). The future of microalgal biotechnology. In R. Cresswell , T. Rees & N. Shah (Eds.).
Algal and cyanobacterial biotechnology (pp. 317-
. England: Longman Scientific and Technical.
Benemann, J., Kooman, B., Weissman J., & Eisenberg, D.
(1980). Development of microalgal harvesting and
high-rate pond technologies in California. In G. Shelef & C. Soeder (Eds.). Algae Biomass: production
and use (pp. 457-475). Amsterdam: Elsiever North
Holland Biomedical Press.
Cai, T., Park, S., & Yebo, L. (2013). Nutrient recovery from wastewater streams by microalgae. Renewable and
Sustainable Energy Reviews, 19, 360-369.
Chevalier, P., Proulx, D., Lessard, P., Vincent, W., & de la
Noüe, J. (2000). Nitrogen and phosphorous removal by high latitude mat-forming cyanobacteria for
potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12, 105-112.
Collos, Y., & Harrison, P. (2014). Acclimation and toxicity of high ammonium to unicellular algae. Marine
Pollution Bulletin, 80, 8-29.
Dai, G., Deblois, Ch., Liu, S., Juneau, P., & Qui, B. (2008).
Differential sensitivity of five cyanobacterial strains
to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field ciaynobacterium Ge-Xian-Mi (Nostoc). Aquatic Toxicology, 89, 113-121.
De la Noüe, J., Lessard, P., & Proulx, D. (1993). Tertiary
treatment of secondarily treated urban wastewater by
intensive culture of Phormidium bohneri. Environmental Technology, 15, 449-458.
de Montaigu, A., Sanz Luque, E., Macias, M., Galvan, A.,
& Fernández, E. (2011). Transcriptional regulation of
CDP1 and CYG56 is required for proper NH4 sensing
in Chlamydomonas. Journal of Experimental Botany,
, 1425-1437.
de-Bashan, L., & Bashan, Y. (2004). Recent advances
in removing phosphorous from wastewater and its
future use as fertiliser (1997-2003). Water Research,
, 4222-4246.
Diniz, G., Silva, A., Araújo, O & Chaloub, R (2017). The
potential of microalgae biomass production for biotechnological purposes using wastewater resources.
Journal of Applied Phycology, 29, 821-832.
Dyhrman, S. (2016). Nutrients and their acquisition:
phosphorus physiology in microalgae. In M. A.
Borowitzka, J. Beardall & J. Raven (Eds.). The Physiology of Microalgae (pp. 155-178). Switzerland:
Springer International Publishing Switzerland Press.
El-Sheekh, M., El-Shouny, W., Osman, M., & El-Gammal,
E. (2014). Treatment of sewage and industrial waste
water effluent by the Cyanobacteria Nostoc muscorum and Anabaena subcylenderica. Journal of Water
Chemistry and Technology, 36, 354-371.
Escudero, A., Blanco, F., Lacalle, A., & Pinto, M. (2014).
Ammonium removal from anaerobically treated
effluent by Chlamydomonas acidophila. Bioresource
Technology, 153, 62-68.
Fernández, E., Llamas, A., & Galván, A. (2008). Nitrogen
assimilation and its regulation. In D. Stern, E. Harris
& G. Witman (Eds.). The Chlamydomonas sourcebook (pp. 69-113). Amsterdam: Elsevier.
Glass, J., Wolfe-Simon, F., & Anbar, A. (2009). Coevolution for metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology, 7, 100-123.
Godos, I., Vargas, V., Blanco, S., García, M., Soto, R.,
García-Encina, P., & Muñoz, R. (2010). A comparative evaluation of microalgae for the degradation of
piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101, 5150-518.
González, L., Cañizares, R., & Baena, S. (1997). Efficiency
of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae
Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 60, 259-262.
González-Garcinuño, A., Tabernero, A., Sánchez-Alvarez,
J., del Valle, E., & Galán, M. (2014). Effect of
nitrogen source on growth and lipid accumulation
in Scenedesmus abundans and Chlorella ellipsoidea.
Bioresource Technology, 173, 334-341.
Herrero, A., Muro-Pastor, A., & Flores, E. (2001). Nitrogen
control in cyanobacteria. Journal of Bacteriology,
, 411-425.
Hidalgo, H. (2012). Los recursos hídricos en Costa Rica,
un enfoque estratégico. In B. Jiménez & J. Galizia
(Eds.). Diagnóstico del agua en las Américas (pp.
-243). México: Foro Consultivo Científico y
Tecnológico, AC.
Kong, Q., Li, L., Martínez, B., & Ruan, R. (2010). Culture
of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9-18.
Lynch, F., Santana-Sanchez, A., Jamsa, M, Sivonen, K.,
Aro, E., & Allahverdiyeva, Y. (2015). Screening
native isolates of cyanobacteria and green alga for
integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research,
, 411-420.
Martínez, M., Sánchez, S., Jiménez, J., Yousfi, F., &
Muñoz, L. (2000). Nitrogen and phosphorus removal
from urban waste water by the microalga Scenedesmus obliquus. Bioresource Technology, 73, 263-272.
Muro-Pastor, I, Reyes, J., & Florencio, F. (2005). Ammonium assimilation in cyanobacteria. Photosynthesis
Research, 83, 135-150.
Nurdogan, Y., & Oswald, W. (1995). Enhanced nutrient
removal in high-rate ponds. Water Science and Technology, 31, 12, 33-43.
Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003).
Annual productivity of Spirulina (Arthrospira) and
nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied
Phycology, 15, 249-257.
Oswald, W. (1989). The role of microalgae in liquid waste
treatment and reclamation. In C. Lembi & J. Waaland
(Eds.). Algae and human affairs (pp. 255-281). Cambridge, UK: Cambridge University Press.
Park, J., Jin., H., LIm, B., Park, K., & Lee, K. (2010).
Ammonia removal from anaerobic digestion effluent
of livestock waste using green alga Scenedesmus sp.
Bioresource Technology, 101, 8649-8657.
Raven, J., & Giordano, M. (2016). Combined nitrogen. In
M. A.Borowitzka, J. Beardall & J. Raven (Eds.). The
Physiology of Microalgae (pp. 143-154). Switzerland: Springer.
Rippka, R. (1988). Isolation and purification of cyanobacteria. Methods in Enzymology, 167, 3-28.
Seale, D., Boraas, M., & Warren, G. (1987). Effects of
sodium and phosphate on growth of Cyanobacteria.
Water Research, 21 625-631.
Shapiro, J. (1990). Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and
pH. Verein. Limnology, 24, 38-54.
Silva-Benavides, A., & Torzillo, G. (2012). Nitrogen
and Phosphorus removal through laboratory batch
cultures of microalga Chlorella Vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal
and as co-cultures. Journal of Applied Phycology,
, 267-276.
Subramanian, M. V., Sumathi, P., & Sivasubramanian, V.
(2009). Studies on kinetics of phosphate uptake by
blue-green algae. Journal of Algal Biomass Utilization, 1, 41-60.
Tam, N., & Wong, Y. (1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57, 45-50.
Visser, P., Ibelings, B., Van Der Veer, B., Koedood, J., &
Mur, R. (1996). Artificial mixing prevents nuisance
blooms of the cyanobacterium Microcystis in Lake
Nieuwe Meer, the Netherlands. Freshwater Biology,
, 2, 435-450.
Voltolina, D., Cordero, B., Nieves, M., & Soto, L. (1999).
Growth of Scenedesmus sp. in artificial wastewater.
Bioresource Technology, 68, 265-268.
Voltolina, D., Gomez-Villa, H., & Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technology, 96, 359-362.
Von Ruckert, G., & Giani, A. (2004). Effect of nitrate and
ammonium on the growth and protein concentration
of Microcystis viridis Lemmermann (Cyanobacteria).
Brazilian Journal of Botany, 27, 2, 325-331.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical