Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Remoción de amonio y fosfato en cultivos de laboratorio con microalgas y cianobacterias aisladas de cuerpos de agua de Costa Rica.
PDF (English)
HTML (English)

Palabras clave

Microalga
Cianobacteria
Nitrógeno
Fósforo
Crecimiento
Productividad
Agua residual.
Microalgae
Cyanobacteria
Ammonium
Phosphorus
Growth
Productivity
Wastewater.

Cómo citar

Campos-Rudin, M., & Silva-Benavides, A. M. (2018). Remoción de amonio y fosfato en cultivos de laboratorio con microalgas y cianobacterias aisladas de cuerpos de agua de Costa Rica. Revista De Biología Tropical, 66(S1), S83–S91. https://doi.org/10.15517/rbt.v66i1.33263

Resumen

La presente investigación utilizó las microalgas Scenedesmus sp,. Chlamydomonas sp. y Chlorella sp. y las cianobacterias Synechocystis sp. y Nostoc sp. nativas de Costa Rica, con el propósito de analizar la capacidad de remoción de amonio y fosfato. Las cepas se colocaron en medio de cultivo sintético, con concentraciones iniciales de amonio de 70 mgL-1 y fosfato de 9 mgL-1. El cultivo se realizó durante 120 h, con luz constante a una intensidad de 60 µmol m-2s-1. Se cuantificaron las siguientes variables cada 24 h en todos los cultivos: a) la tasa de crecimiento (µ), b) productividad (mgL-1h-1), c) concentración de amonio y fosfato. La microalga Chlorella sp. presentó la mayor tasa de crecimiento, luego Chlamydomonas sp. y la cianobacteria Nostoc sp. Los cultivos Scenedesmus sp. y Synechocystis sp. presentaron un menor crecimiento. La mayor remoción de nitrógeno se presentò en Chlorella sp., seguida por Chlamydomonas sp. y Synechosystis sp., Scenedesmus sp. y Nostoc sp. El fosfato se removió en forma total por las microalgas antes de las 72 h, mientras que en Synechocystis sp. y Nostoc sp. fue removido parcialmente. El estudio indica potenciales aplicaciones especialmente de la microalga Chlorella sp. en la remoción de amonio y fosfato en aguas residuales urbanas.
https://doi.org/10.15517/rbt.v66i1.33263
PDF (English)
HTML (English)

Citas

Abalde, J., Cid, A., Fidalgo, P., Torres, E., & Herrero, C.

(1995). Microalgas: cultivos y aplicaciones. La Coru-

ña, Spain: Universidade Da Coruña.

Acién, F., Gómez-Serrano, C., Morales-Amaral, M., Fernández-Sevilla, J. & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a

contribution might it be to significant urban wastewater treatment? Applied Microbiological Biotechnology, 100, 9013-9022.

Ansari, A., Hussain, A., Nawar, A., Qayyum, M. & Ali, E.

(2017). Wastewater treatment by local microalgae

strains for CO2 sequestration and biofuel production.

Applied Water Sciences, 7, 4151-4158. DOI 10.1007/

s1320-017-0574-9

APHA, AWWA, WPCF (1992). Standard methods for the

examination of water and waste water (1995). Washington DC: American Public Health Association.

Aslan, S., & Karapinar, I. (2006). Bacth kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64-70.

Azov, Y., & Goldman, J. C. (1982). Free ammonia inhibition of algal photosynthesis in intensive culture.

Applied Environmental Microbiology, 43, 735-739.

Benemann, J. (1989). The future of microalgal biotechnology. In R. Cresswell , T. Rees & N. Shah (Eds.).

Algal and cyanobacterial biotechnology (pp. 317-

. England: Longman Scientific and Technical.

Benemann, J., Kooman, B., Weissman J., & Eisenberg, D.

(1980). Development of microalgal harvesting and

high-rate pond technologies in California. In G. Shelef & C. Soeder (Eds.). Algae Biomass: production

and use (pp. 457-475). Amsterdam: Elsiever North

Holland Biomedical Press.

Cai, T., Park, S., & Yebo, L. (2013). Nutrient recovery from wastewater streams by microalgae. Renewable and

Sustainable Energy Reviews, 19, 360-369.

Chevalier, P., Proulx, D., Lessard, P., Vincent, W., & de la

Noüe, J. (2000). Nitrogen and phosphorous removal by high latitude mat-forming cyanobacteria for

potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12, 105-112.

Collos, Y., & Harrison, P. (2014). Acclimation and toxicity of high ammonium to unicellular algae. Marine

Pollution Bulletin, 80, 8-29.

Dai, G., Deblois, Ch., Liu, S., Juneau, P., & Qui, B. (2008).

Differential sensitivity of five cyanobacterial strains

to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field ciaynobacterium Ge-Xian-Mi (Nostoc). Aquatic Toxicology, 89, 113-121.

De la Noüe, J., Lessard, P., & Proulx, D. (1993). Tertiary

treatment of secondarily treated urban wastewater by

intensive culture of Phormidium bohneri. Environmental Technology, 15, 449-458.

de Montaigu, A., Sanz Luque, E., Macias, M., Galvan, A.,

& Fernández, E. (2011). Transcriptional regulation of

CDP1 and CYG56 is required for proper NH4 sensing

in Chlamydomonas. Journal of Experimental Botany,

, 1425-1437.

de-Bashan, L., & Bashan, Y. (2004). Recent advances

in removing phosphorous from wastewater and its

future use as fertiliser (1997-2003). Water Research,

, 4222-4246.

Diniz, G., Silva, A., Araújo, O & Chaloub, R (2017). The

potential of microalgae biomass production for biotechnological purposes using wastewater resources.

Journal of Applied Phycology, 29, 821-832.

Dyhrman, S. (2016). Nutrients and their acquisition:

phosphorus physiology in microalgae. In M. A.

Borowitzka, J. Beardall & J. Raven (Eds.). The Physiology of Microalgae (pp. 155-178). Switzerland:

Springer International Publishing Switzerland Press.

El-Sheekh, M., El-Shouny, W., Osman, M., & El-Gammal,

E. (2014). Treatment of sewage and industrial waste

water effluent by the Cyanobacteria Nostoc muscorum and Anabaena subcylenderica. Journal of Water

Chemistry and Technology, 36, 354-371.

Escudero, A., Blanco, F., Lacalle, A., & Pinto, M. (2014).

Ammonium removal from anaerobically treated

effluent by Chlamydomonas acidophila. Bioresource

Technology, 153, 62-68.

Fernández, E., Llamas, A., & Galván, A. (2008). Nitrogen

assimilation and its regulation. In D. Stern, E. Harris

& G. Witman (Eds.). The Chlamydomonas sourcebook (pp. 69-113). Amsterdam: Elsevier.

Glass, J., Wolfe-Simon, F., & Anbar, A. (2009). Coevolution for metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology, 7, 100-123.

Godos, I., Vargas, V., Blanco, S., García, M., Soto, R.,

García-Encina, P., & Muñoz, R. (2010). A comparative evaluation of microalgae for the degradation of

piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101, 5150-518.

González, L., Cañizares, R., & Baena, S. (1997). Efficiency

of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae

Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 60, 259-262.

González-Garcinuño, A., Tabernero, A., Sánchez-Alvarez,

J., del Valle, E., & Galán, M. (2014). Effect of

nitrogen source on growth and lipid accumulation

in Scenedesmus abundans and Chlorella ellipsoidea.

Bioresource Technology, 173, 334-341.

Herrero, A., Muro-Pastor, A., & Flores, E. (2001). Nitrogen

control in cyanobacteria. Journal of Bacteriology,

, 411-425.

Hidalgo, H. (2012). Los recursos hídricos en Costa Rica,

un enfoque estratégico. In B. Jiménez & J. Galizia

(Eds.). Diagnóstico del agua en las Américas (pp.

-243). México: Foro Consultivo Científico y

Tecnológico, AC.

Kong, Q., Li, L., Martínez, B., & Ruan, R. (2010). Culture

of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9-18.

Lynch, F., Santana-Sanchez, A., Jamsa, M, Sivonen, K.,

Aro, E., & Allahverdiyeva, Y. (2015). Screening

native isolates of cyanobacteria and green alga for

integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research,

, 411-420.

Martínez, M., Sánchez, S., Jiménez, J., Yousfi, F., &

Muñoz, L. (2000). Nitrogen and phosphorus removal

from urban waste water by the microalga Scenedesmus obliquus. Bioresource Technology, 73, 263-272.

Muro-Pastor, I, Reyes, J., & Florencio, F. (2005). Ammonium assimilation in cyanobacteria. Photosynthesis

Research, 83, 135-150.

Nurdogan, Y., & Oswald, W. (1995). Enhanced nutrient

removal in high-rate ponds. Water Science and Technology, 31, 12, 33-43.

Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003).

Annual productivity of Spirulina (Arthrospira) and

nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied

Phycology, 15, 249-257.

Oswald, W. (1989). The role of microalgae in liquid waste

treatment and reclamation. In C. Lembi & J. Waaland

(Eds.). Algae and human affairs (pp. 255-281). Cambridge, UK: Cambridge University Press.

Park, J., Jin., H., LIm, B., Park, K., & Lee, K. (2010).

Ammonia removal from anaerobic digestion effluent

of livestock waste using green alga Scenedesmus sp.

Bioresource Technology, 101, 8649-8657.

Raven, J., & Giordano, M. (2016). Combined nitrogen. In

M. A.Borowitzka, J. Beardall & J. Raven (Eds.). The

Physiology of Microalgae (pp. 143-154). Switzerland: Springer.

Rippka, R. (1988). Isolation and purification of cyanobacteria. Methods in Enzymology, 167, 3-28.

Seale, D., Boraas, M., & Warren, G. (1987). Effects of

sodium and phosphate on growth of Cyanobacteria.

Water Research, 21 625-631.

Shapiro, J. (1990). Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and

pH. Verein. Limnology, 24, 38-54.

Silva-Benavides, A., & Torzillo, G. (2012). Nitrogen

and Phosphorus removal through laboratory batch

cultures of microalga Chlorella Vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal

and as co-cultures. Journal of Applied Phycology,

, 267-276.

Subramanian, M. V., Sumathi, P., & Sivasubramanian, V.

(2009). Studies on kinetics of phosphate uptake by

blue-green algae. Journal of Algal Biomass Utilization, 1, 41-60.

Tam, N., & Wong, Y. (1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57, 45-50.

Visser, P., Ibelings, B., Van Der Veer, B., Koedood, J., &

Mur, R. (1996). Artificial mixing prevents nuisance

blooms of the cyanobacterium Microcystis in Lake

Nieuwe Meer, the Netherlands. Freshwater Biology,

, 2, 435-450.

Voltolina, D., Cordero, B., Nieves, M., & Soto, L. (1999).

Growth of Scenedesmus sp. in artificial wastewater.

Bioresource Technology, 68, 265-268.

Voltolina, D., Gomez-Villa, H., & Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technology, 96, 359-362.

Von Ruckert, G., & Giani, A. (2004). Effect of nitrate and

ammonium on the growth and protein concentration

of Microcystis viridis Lemmermann (Cyanobacteria).

Brazilian Journal of Botany, 27, 2, 325-331.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2018 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.