Resumen
La presente investigación utilizó las microalgas Scenedesmus sp,. Chlamydomonas sp. y Chlorella sp. y las cianobacterias Synechocystis sp. y Nostoc sp. nativas de Costa Rica, con el propósito de analizar la capacidad de remoción de amonio y fosfato. Las cepas se colocaron en medio de cultivo sintético, con concentraciones iniciales de amonio de 70 mgL-1 y fosfato de 9 mgL-1. El cultivo se realizó durante 120 h, con luz constante a una intensidad de 60 µmol m-2s-1. Se cuantificaron las siguientes variables cada 24 h en todos los cultivos: a) la tasa de crecimiento (µ), b) productividad (mgL-1h-1), c) concentración de amonio y fosfato. La microalga Chlorella sp. presentó la mayor tasa de crecimiento, luego Chlamydomonas sp. y la cianobacteria Nostoc sp. Los cultivos Scenedesmus sp. y Synechocystis sp. presentaron un menor crecimiento. La mayor remoción de nitrógeno se presentò en Chlorella sp., seguida por Chlamydomonas sp. y Synechosystis sp., Scenedesmus sp. y Nostoc sp. El fosfato se removió en forma total por las microalgas antes de las 72 h, mientras que en Synechocystis sp. y Nostoc sp. fue removido parcialmente. El estudio indica potenciales aplicaciones especialmente de la microalga Chlorella sp. en la remoción de amonio y fosfato en aguas residuales urbanas.Citas
Abalde, J., Cid, A., Fidalgo, P., Torres, E., & Herrero, C.
(1995). Microalgas: cultivos y aplicaciones. La Coru-
ña, Spain: Universidade Da Coruña.
Acién, F., Gómez-Serrano, C., Morales-Amaral, M., Fernández-Sevilla, J. & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a
contribution might it be to significant urban wastewater treatment? Applied Microbiological Biotechnology, 100, 9013-9022.
Ansari, A., Hussain, A., Nawar, A., Qayyum, M. & Ali, E.
(2017). Wastewater treatment by local microalgae
strains for CO2 sequestration and biofuel production.
Applied Water Sciences, 7, 4151-4158. DOI 10.1007/
s1320-017-0574-9
APHA, AWWA, WPCF (1992). Standard methods for the
examination of water and waste water (1995). Washington DC: American Public Health Association.
Aslan, S., & Karapinar, I. (2006). Bacth kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64-70.
Azov, Y., & Goldman, J. C. (1982). Free ammonia inhibition of algal photosynthesis in intensive culture.
Applied Environmental Microbiology, 43, 735-739.
Benemann, J. (1989). The future of microalgal biotechnology. In R. Cresswell , T. Rees & N. Shah (Eds.).
Algal and cyanobacterial biotechnology (pp. 317-
. England: Longman Scientific and Technical.
Benemann, J., Kooman, B., Weissman J., & Eisenberg, D.
(1980). Development of microalgal harvesting and
high-rate pond technologies in California. In G. Shelef & C. Soeder (Eds.). Algae Biomass: production
and use (pp. 457-475). Amsterdam: Elsiever North
Holland Biomedical Press.
Cai, T., Park, S., & Yebo, L. (2013). Nutrient recovery from wastewater streams by microalgae. Renewable and
Sustainable Energy Reviews, 19, 360-369.
Chevalier, P., Proulx, D., Lessard, P., Vincent, W., & de la
Noüe, J. (2000). Nitrogen and phosphorous removal by high latitude mat-forming cyanobacteria for
potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12, 105-112.
Collos, Y., & Harrison, P. (2014). Acclimation and toxicity of high ammonium to unicellular algae. Marine
Pollution Bulletin, 80, 8-29.
Dai, G., Deblois, Ch., Liu, S., Juneau, P., & Qui, B. (2008).
Differential sensitivity of five cyanobacterial strains
to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field ciaynobacterium Ge-Xian-Mi (Nostoc). Aquatic Toxicology, 89, 113-121.
De la Noüe, J., Lessard, P., & Proulx, D. (1993). Tertiary
treatment of secondarily treated urban wastewater by
intensive culture of Phormidium bohneri. Environmental Technology, 15, 449-458.
de Montaigu, A., Sanz Luque, E., Macias, M., Galvan, A.,
& Fernández, E. (2011). Transcriptional regulation of
CDP1 and CYG56 is required for proper NH4 sensing
in Chlamydomonas. Journal of Experimental Botany,
, 1425-1437.
de-Bashan, L., & Bashan, Y. (2004). Recent advances
in removing phosphorous from wastewater and its
future use as fertiliser (1997-2003). Water Research,
, 4222-4246.
Diniz, G., Silva, A., Araújo, O & Chaloub, R (2017). The
potential of microalgae biomass production for biotechnological purposes using wastewater resources.
Journal of Applied Phycology, 29, 821-832.
Dyhrman, S. (2016). Nutrients and their acquisition:
phosphorus physiology in microalgae. In M. A.
Borowitzka, J. Beardall & J. Raven (Eds.). The Physiology of Microalgae (pp. 155-178). Switzerland:
Springer International Publishing Switzerland Press.
El-Sheekh, M., El-Shouny, W., Osman, M., & El-Gammal,
E. (2014). Treatment of sewage and industrial waste
water effluent by the Cyanobacteria Nostoc muscorum and Anabaena subcylenderica. Journal of Water
Chemistry and Technology, 36, 354-371.
Escudero, A., Blanco, F., Lacalle, A., & Pinto, M. (2014).
Ammonium removal from anaerobically treated
effluent by Chlamydomonas acidophila. Bioresource
Technology, 153, 62-68.
Fernández, E., Llamas, A., & Galván, A. (2008). Nitrogen
assimilation and its regulation. In D. Stern, E. Harris
& G. Witman (Eds.). The Chlamydomonas sourcebook (pp. 69-113). Amsterdam: Elsevier.
Glass, J., Wolfe-Simon, F., & Anbar, A. (2009). Coevolution for metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology, 7, 100-123.
Godos, I., Vargas, V., Blanco, S., García, M., Soto, R.,
García-Encina, P., & Muñoz, R. (2010). A comparative evaluation of microalgae for the degradation of
piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101, 5150-518.
González, L., Cañizares, R., & Baena, S. (1997). Efficiency
of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae
Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 60, 259-262.
González-Garcinuño, A., Tabernero, A., Sánchez-Alvarez,
J., del Valle, E., & Galán, M. (2014). Effect of
nitrogen source on growth and lipid accumulation
in Scenedesmus abundans and Chlorella ellipsoidea.
Bioresource Technology, 173, 334-341.
Herrero, A., Muro-Pastor, A., & Flores, E. (2001). Nitrogen
control in cyanobacteria. Journal of Bacteriology,
, 411-425.
Hidalgo, H. (2012). Los recursos hídricos en Costa Rica,
un enfoque estratégico. In B. Jiménez & J. Galizia
(Eds.). Diagnóstico del agua en las Américas (pp.
-243). México: Foro Consultivo Científico y
Tecnológico, AC.
Kong, Q., Li, L., Martínez, B., & Ruan, R. (2010). Culture
of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9-18.
Lynch, F., Santana-Sanchez, A., Jamsa, M, Sivonen, K.,
Aro, E., & Allahverdiyeva, Y. (2015). Screening
native isolates of cyanobacteria and green alga for
integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research,
, 411-420.
Martínez, M., Sánchez, S., Jiménez, J., Yousfi, F., &
Muñoz, L. (2000). Nitrogen and phosphorus removal
from urban waste water by the microalga Scenedesmus obliquus. Bioresource Technology, 73, 263-272.
Muro-Pastor, I, Reyes, J., & Florencio, F. (2005). Ammonium assimilation in cyanobacteria. Photosynthesis
Research, 83, 135-150.
Nurdogan, Y., & Oswald, W. (1995). Enhanced nutrient
removal in high-rate ponds. Water Science and Technology, 31, 12, 33-43.
Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003).
Annual productivity of Spirulina (Arthrospira) and
nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied
Phycology, 15, 249-257.
Oswald, W. (1989). The role of microalgae in liquid waste
treatment and reclamation. In C. Lembi & J. Waaland
(Eds.). Algae and human affairs (pp. 255-281). Cambridge, UK: Cambridge University Press.
Park, J., Jin., H., LIm, B., Park, K., & Lee, K. (2010).
Ammonia removal from anaerobic digestion effluent
of livestock waste using green alga Scenedesmus sp.
Bioresource Technology, 101, 8649-8657.
Raven, J., & Giordano, M. (2016). Combined nitrogen. In
M. A.Borowitzka, J. Beardall & J. Raven (Eds.). The
Physiology of Microalgae (pp. 143-154). Switzerland: Springer.
Rippka, R. (1988). Isolation and purification of cyanobacteria. Methods in Enzymology, 167, 3-28.
Seale, D., Boraas, M., & Warren, G. (1987). Effects of
sodium and phosphate on growth of Cyanobacteria.
Water Research, 21 625-631.
Shapiro, J. (1990). Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and
pH. Verein. Limnology, 24, 38-54.
Silva-Benavides, A., & Torzillo, G. (2012). Nitrogen
and Phosphorus removal through laboratory batch
cultures of microalga Chlorella Vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal
and as co-cultures. Journal of Applied Phycology,
, 267-276.
Subramanian, M. V., Sumathi, P., & Sivasubramanian, V.
(2009). Studies on kinetics of phosphate uptake by
blue-green algae. Journal of Algal Biomass Utilization, 1, 41-60.
Tam, N., & Wong, Y. (1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57, 45-50.
Visser, P., Ibelings, B., Van Der Veer, B., Koedood, J., &
Mur, R. (1996). Artificial mixing prevents nuisance
blooms of the cyanobacterium Microcystis in Lake
Nieuwe Meer, the Netherlands. Freshwater Biology,
, 2, 435-450.
Voltolina, D., Cordero, B., Nieves, M., & Soto, L. (1999).
Growth of Scenedesmus sp. in artificial wastewater.
Bioresource Technology, 68, 265-268.
Voltolina, D., Gomez-Villa, H., & Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technology, 96, 359-362.
Von Ruckert, G., & Giani, A. (2004). Effect of nitrate and
ammonium on the growth and protein concentration
of Microcystis viridis Lemmermann (Cyanobacteria).
Brazilian Journal of Botany, 27, 2, 325-331.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2018 Revista de Biología Tropical