Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Aspectos químicos y morfo-funcionales de la interacción entre un chinche neotropical de resina y una planta pegajosa
PDF
HTML

Keywords

tricomas glandulares
resina vegetal
chinches asesinos
interacción insecto-planta
Heniartes stali
Rubus adenotrichos
glandular trichomes
plant resin
assassin bug
insect-plant interaction
Heniartes stali,
Rubus adenotrichos

How to Cite

Jiménez-Pomárico, A., Avila-Núñez, J. L., Oliveros-Bastidas, A., Rojas Márquez, F., Avendaño, M., Uzcátegui, D., Mendoza, R. V., Dávila Vera, D., Rojas, L. B., & Aparicio, R. (2019). Aspectos químicos y morfo-funcionales de la interacción entre un chinche neotropical de resina y una planta pegajosa. Revista De Biología Tropical, 67(3), 454–465. https://doi.org/10.15517/rbt.v67i3.33525

Abstract

Rubus adenotrichos es una planta de mora andina que contiene tricomas glandulares los cuales secretan un exudado pegajoso. El chinche de las resinas Heniartes stali se encuentra con frecuencia en esta planta recogiendo el exudado con sus patas delanteras para mejorar su capacidad en la captura de las presas. En este trabajo empleamos microscopía de luz y microscopía electrónica de barrido para describir la morfología de los tricomas. Los constituyentes químicos del exudado fueron estudiados mediante técnicas histoquímicas, de cromatografía de gases y espectrometría de masas. También combinamos observaciones del comportamiento del insecto en la recolección y almacenamiento del exudado con el análisis de la morfología de sus patas, empleando microscopía de luz y microscopía electrónica de barrido para identificar las posibles adaptaciones morfo-funcionales desarrolladas para la manipulación de estas secreciones adhesivas. Los tricomas glandulares exhibieron un tallo largo multicelular y una cabeza glandular en forma de cáliz con células alineadas radialmente. El fluido resinoso estaba compuesto principalmente por terpenos y compuestos fenólicos, los cuales parecen contribuir con sus propiedades adhesivas. La presencia de estructuras tipo pincel en las puntas de las tibias de las patas delanteras sugieren un carácter adaptativo para recoger el exudado de los tricomas. También describimos un área en las patas traseras profusamente cubierta de pelos, que funcionaban como estructuras de almacenamiento de la resina. En la cutícula de éstas observamos abundantes aberturas similares a poros y sugerimos que a través de ellos se secretan sustancias que impiden el endurecimiento de la resina almacenada. Estos hallazgos aportan información sobre características morfológicas y químicas de un novedoso modelo de interacción insecto-planta en el neotrópico.

https://doi.org/10.15517/rbt.v67i3.33525
PDF
HTML

References

Acevedo, M. F., & Ataroff, M. (2012). Leaf Spectra and Weight of Species in Canopy, Subcanopy, and Understory Layers in a Venezuelan Andean Cloud Forest. Scientifica. DOI: 10.6064/2012/839584

Adams, P. R. (2007). Identification of essential oil components by Gas Chromatography/Mass Spectromety. Illinois: Allured Publishing Corp.

Avila-Núñez, J. L., Naya, M., Otero, L. D., & Alonso-Amelot, M. E. (2016). A resin bug (Reduviidae: Harpactorinae: Apiomerini) harvesting the trichome secretion from an Andean blackberry. Neotropical Biodiversity, 2, 151-158.

Avila-Núñez, J. L., Naya, M., Otero, L. D., & Alonso-Amelot, M. E. (2017). Sticky trap predation in the neotropical resin bug Heniartes stali (Wygodzinsky) (Hemiptera: Reduviidae: Harpactorinae). Journal of Ethology, 35, 213-219.

Betz, O. (2010). Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In J. Byern & I. Grunwald (Eds.), Biological Adhesive Systems - From Nature to Technical and Medical Application (pp. 111-152). New York: Springer.

Calcagno-Pissarelli, M. P., Alonso-Amelot, M. E., Mora, R., Rodriguez, D., & Avila-Núñez, J. L. (2010). Foliar exudates of Blakiella bartsiifolia (SF Blake) Cuatrec (Asteraceae). A preliminary study of the chemical composition. Avances en Química, 5, 161-166.

Catalá, S., & Schofield, C. J. (1994). The antennal sensilla of Rhodnius. Journal of Morphology, 219, 193-203.

Choe, D. H., & Rust, M. (2007). Use of plant resin by a bee assasin bug, Apiomerus flaviventris (Hemiptera: Reduviidae). Annals of the Entomological Society of America, 100, 320-326.

Falara, V., & Pichersky, E. (2012). Plant volatiles and other specialized metabolites: synthesis, storage, emission, and function. In J. M. Vivanco & F. Baluska (Eds.), Secretions and Exudates in Biological Systems, Signaling and Communication in Plants (pp. 109-123). Berlin Heidelberg: Springer-Verlag.

Forero, D., Choe, D. H., & Weirauch, C. (2011). Resin gathering in neotropical resin bugs (Insecta: Hemiptera: Reduviidae): Functional and Comparative Morphology. Journal of Morphology, 272, 204-229.

Frenzke, L., Lederer, A., Malanin, M., Eichhorn, K. L., Neinhuis, C., & Voigt, D. (2016). Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages. Planta, 244, 145-154. DOI: 10.1007/s00425-016-2496-4

Furr, M., & Mahlberg, P. G. (1981). Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products, 44, 153-159.

Gallenmüller F., Feus, A., Fiedler, K., & Speck, T. (2015). Rose prickles and Asparagus spines - different hook structures as attachment devices in climbing plants. PLoS ONE, 10(12), e0143850. DOI:10.1371/journal.pone.0143850

Gallo, M. B. C., & Sarachine, M. J. (2009). Biological Activities of Lupeol. International Journal of Biomedical and Pharmaceutical Sciences, 3, 46-66.

Gil-Santana, H. R., Costa, L. A. A., Forero, D., & Zeraik, S. (2003). Sinopse dos Apiomerini, com chave ilustrada para os géneros (Hemiptera-Heteroptera, Reduviidae, Harpactorinae). Publicações Avulsas do Museu Nacional, 97, 1-24.

Glas, J. J., Schimmel, B. C. J., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant GT as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13, 17077-17103.

Gravano, E., Tani, C., Bennici, A., & Gucci, R. (1998). The ultrastructure of glandular trichomes of Phillyrea latifolia L. (Oleaceae) leaves. Annals of Botany, 81, 327-335.

Gregory, P., Ave, D. A., Bouthyette, P. Y., & Tingey, W. M. (1986). Insect-defensive chemistry of potato GT. In B. E. Juniper & T. R. E. Southwood (Eds.), Insects and the plant surface (pp. 173-183), London: E. Arnold.

Hashidoko, Y., Endoh, K., Kudo, T., & Tahara, S. (2001).Capability of wild Rosa rugosa and its varieties and hybrids to produce sesquiterpene components in leaf glandular trichomes. Bioscience, Biotechnology and Biochemistry, 65, 2037-2043.

Hashidoko, Y., Satushi, T., & Junya, M. (1992). Rugosal and related carotane sesquiterpenes in the glandular trichome exudate of Rosa rugosa. Phytochemistry, 31, 779-782.

Huchelmann, A., Boutry, M., & Hachez, C. (2017). Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiology, 175, 6-22.

Johansen, D. A. (1940). Plant Microtechnique. New York: McGraw-Hill.

Kellogg, A. A., Branaman, T. J., Jones, N. M., Little, C. Z., & Swanson, J. D. (2011). Morphological studies of developing Rubus prickles suggest that they are modified glandular trichomes. Botany, 89, 217-226.

Kiger R. W. (1971). Epidermal and cuticular mounts of plant material obtained by maceration. Stain Technology, 46, 71-75.

Kraus, J. E., Sousa, H. C., Rezende, M. H., Castro, N. M., Vecchi, C., & Luque, R. (1998). Astra blue and basic fuchsin double staining of plant materials. Biotechnic & Histochemistry, 73, 235-243.

Krimmel, B. A., & Pearse, I. S. (2013). Sticky plant traps insects to enhance indirect defence. Ecology Letters, 16, 219-224.

Levin, D. A. (1973). The role of trichomes in plant defence. The Quarterly Review of Biology, 48, 3-15.

Maatta-Riihinen, K. R., Kamal-Eldin, A., & Torronen, A. R. (2004). Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae). Journal of Agricultural and Food Chemistry, 52, 6178-6187.

Mullen, W., McGinn, J., Lean, M. E. J., MacLean, M. R., Gardner, P., Duthie, G. G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50, 5191-5196.

Patel, A. V., Rojas-Vera, J., & Dacke, C. G. (2004). Therapeutic Constituents and Actions of Rubus Species. Current Medicinal Chemistry, 11, 1501-1512.

Peiffer, M., Tooker, J. F., Luthe, D. S., & Felton, G. W. (2009). Plants on early alert: GT as sensors for insect herbivores. New Phytologist, 184, 644-656.

Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for

pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237-243.

Pohl, S. A. (2009). Untersuchungen zur möglichen Protokarnivorie von Lathraea squamaria, Salvia glutinosa und Rubus phoeniculasius (Diploma thesis). University of Vienna.

Price, M., & Butler, L. G. (1977). Rapid visual estimation and spectrophotometric determination of tannin content of Sorghum grain. Journal of Agricultural and Food Chemistry, 25, 1268-1273.

Ribeiro-Marinho, C., Poletti Martucci, M. A., Gobbo-Neto, L., & Pádua Teixeira, S. (2018). Chemical composition and secretion biology of the floral bouquet in legume trees (Fabaceae). Botanical Journal of the Linnean Society, 187, 5-25.

Rischka, K., Richter, K., Hartwig, A., Kozielec, M., Slenzka, K., Sader, R, & Grunwald, I. (2010). Bio-inspired polyphenolic adhesives for medical and technical applications. In J. von Byern & I. Grunwald (Eds.), Biological Adhesive Systems From Nature to Technical and Medical Application (pp. 201-211). Vienna: Springer.

Roepke, W. (1932). Über "Harzwanzen" von Sumatra und Java. Miscellanea Zoologica Sumatrana, 68, 1-5.

Romero, G. Q., Souza, J. C., & Vasconcellos-Neto, J. C. (2008). Anti-herbivore protection by mutualistic spiders and the role of plant glandular trichomes. Ecology, 89, 3105-3115.

Roshchina, V. (2014). Model systems to study the excretory function of higher plants. Berlin: Springer.

Schilmiller, A. L., Last, R. L., & Pichersky, E. (2008). Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal, 54, 702-711.

Schnetzler, B. N., Teixeira, S. P., & Ribeiro-Marinho, C. R. (2017). Trichomes that secrete substances of a mixed nature in the vegetative and reproductive organs of some species of Moraceae. Acta Botanica Brasilica, 31, 392-402.

Schuh, R. T., & Slater, J. A. (1995). True bugs of the world (Hemiptera: Heteroptera): Classification and natural history. New York: Cornell University Press.

Seto, T., Tanaka, T., & Tanaka, O. (1984). β-glucosyl esters 19α-hydroxyursolic acid derivatives in leaves of Rubus species. Phytochemistry, 23, 2829-2834.

Simoneit, B. R. T., Medeiros, P. M., & Wollenweber, E. (2008). Triterpenoids as major components of the insect-trapping glue of Roridula species. Zeitschrift für Naturforschung, 63c, 625-630.

Sousa, E. A. (2016). How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Annals of Botany, 117, 533-540.

Sugiura, S., & Yamazaki, K. (2006). Consequences of scavenging behaviour in a plant bug associated with a glandular plant. Biological Journal of the Linnean Society, 88, 593-602.

Sulborska, A., & Weryszko-Chmielewska, E. (2014). Characteristics of the secretory structures in the flowers of Rosa rugosa Thunb. Acta Agrobotanica, 67, 13-24.

Tian, D., Tooker, J., Peiffer, M., Chung, S. H., & Felton, G. W. (2012). Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236, 1053-1066.

Tissier, A. (2012). Gland trichomes: What comes after expressed sequence tags? The Plant Journal, 70, 51-88.

Voigt, D., & Gorb, S. (2008). An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. Journal of Experimental Biology, 211, 2647-2657.

Voigt, D., & Gorb, S. (2010). Locomotion in a sticky terrain. Arthropod-Plant Interactions, 4, 69-79.

Wagner, G. J. (1991). Secreting GT: More than just hairs. Plant Physiology, 96, 675-679.

Wagner, G., Wang, E., & Shepherd, R. (2004). New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany (Lond), 93, 3-1.

Weirauch, C. (2008). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33, 229-274.

Werker, E. (2000). Trichomes diversity and development. In D. C. Hallahan & J. C. Gray (Eds.), Advances in Botanical Research, Plant trichomes (pp. 4-30). London: Academic Press.

Wheeler, A. G., & Krimmel, B. A. (2015). Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. Annual Review of Entomology, 60, 393-414.

Zhang, G., & Weirauch, C. (2011). Sticky predators: a comparative study of sticky glands in harpactorinae assassin bugs (Insecta: Hemiptera: Reduviidae). Acta Zoologica-Stockholm, 94, 1-10.

Zhang, J., Weirauch, C., Zhang, G., & Forero, D. (2015). Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics, 32, 538-554.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Alejandra Jiménez-Pomárico, Jorge Luis Avila-Núñez, Alberto Oliveros-Bastidas, Foción Rojas Márquez, Marisabel Avendaño, Denys Uzcátegui, Rosa Virginia Mendoza, Delsy Dávila Vera, Luis Rojas, Rosa Aparicio

Downloads

Download data is not yet available.