Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Chemical and morpho-functional aspects of the interaction between a Neotropical resin bug and a sticky plant
PDF (English)
HTML (English)

Palabras clave

tricomas glandulares
resina vegetal
chinches asesinos
interacción insecto-planta
Heniartes stali
Rubus adenotrichos
glandular trichomes
plant resin
assassin bug
insect-plant interaction
Heniartes stali,
Rubus adenotrichos

Cómo citar

Jiménez-Pomárico, A., Avila-Núñez, J. L., Oliveros-Bastidas, A., Rojas Márquez, F., Avendaño, M., Uzcátegui, D., Mendoza, R. V., Dávila Vera, D., Rojas, L. B., & Aparicio, R. (2019). Chemical and morpho-functional aspects of the interaction between a Neotropical resin bug and a sticky plant. Revista De Biología Tropical, 67(3), 454–465. https://doi.org/10.15517/rbt.v67i3.33525

Resumen

Rubus adenotrichos is an Andean blackberry plant bearing glandular trichomes which secrete an adhesive exudate. The resin bug Heniartes stali is frequently found on this plant and collects this exudate using the forelegs to enhance its preying capacity. Here, we describe the morphology of the plant’s glandular trichomes with the aid of light and scanning electron microscopy, as well as the chemical components of the exudate by histochemical and gas chromatography-mass spectrometry analysis. We have also combined behavioral observations with the analysis of the insect leg morphology to identify possible morpho-functional adaptations evolved by H. stali for collecting the sticky secretions. Glandular trichomes exhibited a multicellular long stalk and a calyx-shaped head with radially aligned cells. The composition of the resinous fluid was mainly terpenes and phenolics, which may contribute to its sticky properties. Brush-like structures on the tibia of forelegs in H. stali suggests an adaptive trait for collecting the trichomes exudate. A profusely hair-covered area on metatibiae operated as a resin storage structure. Abundant pore-like openings were observed in the cuticle of this area through which substances could be conceivably secreted to prevent resin hardening. These findings combine morphological and chemical features of a fascinating insect-plant interaction in the Neotropics.

https://doi.org/10.15517/rbt.v67i3.33525
PDF (English)
HTML (English)

Citas

Acevedo, M. F., & Ataroff, M. (2012). Leaf Spectra and Weight of Species in Canopy, Subcanopy, and Understory Layers in a Venezuelan Andean Cloud Forest. Scientifica. DOI: 10.6064/2012/839584

Adams, P. R. (2007). Identification of essential oil components by Gas Chromatography/Mass Spectromety. Illinois: Allured Publishing Corp.

Avila-Núñez, J. L., Naya, M., Otero, L. D., & Alonso-Amelot, M. E. (2016). A resin bug (Reduviidae: Harpactorinae: Apiomerini) harvesting the trichome secretion from an Andean blackberry. Neotropical Biodiversity, 2, 151-158.

Avila-Núñez, J. L., Naya, M., Otero, L. D., & Alonso-Amelot, M. E. (2017). Sticky trap predation in the neotropical resin bug Heniartes stali (Wygodzinsky) (Hemiptera: Reduviidae: Harpactorinae). Journal of Ethology, 35, 213-219.

Betz, O. (2010). Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In J. Byern & I. Grunwald (Eds.), Biological Adhesive Systems - From Nature to Technical and Medical Application (pp. 111-152). New York: Springer.

Calcagno-Pissarelli, M. P., Alonso-Amelot, M. E., Mora, R., Rodriguez, D., & Avila-Núñez, J. L. (2010). Foliar exudates of Blakiella bartsiifolia (SF Blake) Cuatrec (Asteraceae). A preliminary study of the chemical composition. Avances en Química, 5, 161-166.

Catalá, S., & Schofield, C. J. (1994). The antennal sensilla of Rhodnius. Journal of Morphology, 219, 193-203.

Choe, D. H., & Rust, M. (2007). Use of plant resin by a bee assasin bug, Apiomerus flaviventris (Hemiptera: Reduviidae). Annals of the Entomological Society of America, 100, 320-326.

Falara, V., & Pichersky, E. (2012). Plant volatiles and other specialized metabolites: synthesis, storage, emission, and function. In J. M. Vivanco & F. Baluska (Eds.), Secretions and Exudates in Biological Systems, Signaling and Communication in Plants (pp. 109-123). Berlin Heidelberg: Springer-Verlag.

Forero, D., Choe, D. H., & Weirauch, C. (2011). Resin gathering in neotropical resin bugs (Insecta: Hemiptera: Reduviidae): Functional and Comparative Morphology. Journal of Morphology, 272, 204-229.

Frenzke, L., Lederer, A., Malanin, M., Eichhorn, K. L., Neinhuis, C., & Voigt, D. (2016). Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages. Planta, 244, 145-154. DOI: 10.1007/s00425-016-2496-4

Furr, M., & Mahlberg, P. G. (1981). Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products, 44, 153-159.

Gallenmüller F., Feus, A., Fiedler, K., & Speck, T. (2015). Rose prickles and Asparagus spines - different hook structures as attachment devices in climbing plants. PLoS ONE, 10(12), e0143850. DOI:10.1371/journal.pone.0143850

Gallo, M. B. C., & Sarachine, M. J. (2009). Biological Activities of Lupeol. International Journal of Biomedical and Pharmaceutical Sciences, 3, 46-66.

Gil-Santana, H. R., Costa, L. A. A., Forero, D., & Zeraik, S. (2003). Sinopse dos Apiomerini, com chave ilustrada para os géneros (Hemiptera-Heteroptera, Reduviidae, Harpactorinae). Publicações Avulsas do Museu Nacional, 97, 1-24.

Glas, J. J., Schimmel, B. C. J., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant GT as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13, 17077-17103.

Gravano, E., Tani, C., Bennici, A., & Gucci, R. (1998). The ultrastructure of glandular trichomes of Phillyrea latifolia L. (Oleaceae) leaves. Annals of Botany, 81, 327-335.

Gregory, P., Ave, D. A., Bouthyette, P. Y., & Tingey, W. M. (1986). Insect-defensive chemistry of potato GT. In B. E. Juniper & T. R. E. Southwood (Eds.), Insects and the plant surface (pp. 173-183), London: E. Arnold.

Hashidoko, Y., Endoh, K., Kudo, T., & Tahara, S. (2001).Capability of wild Rosa rugosa and its varieties and hybrids to produce sesquiterpene components in leaf glandular trichomes. Bioscience, Biotechnology and Biochemistry, 65, 2037-2043.

Hashidoko, Y., Satushi, T., & Junya, M. (1992). Rugosal and related carotane sesquiterpenes in the glandular trichome exudate of Rosa rugosa. Phytochemistry, 31, 779-782.

Huchelmann, A., Boutry, M., & Hachez, C. (2017). Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiology, 175, 6-22.

Johansen, D. A. (1940). Plant Microtechnique. New York: McGraw-Hill.

Kellogg, A. A., Branaman, T. J., Jones, N. M., Little, C. Z., & Swanson, J. D. (2011). Morphological studies of developing Rubus prickles suggest that they are modified glandular trichomes. Botany, 89, 217-226.

Kiger R. W. (1971). Epidermal and cuticular mounts of plant material obtained by maceration. Stain Technology, 46, 71-75.

Kraus, J. E., Sousa, H. C., Rezende, M. H., Castro, N. M., Vecchi, C., & Luque, R. (1998). Astra blue and basic fuchsin double staining of plant materials. Biotechnic & Histochemistry, 73, 235-243.

Krimmel, B. A., & Pearse, I. S. (2013). Sticky plant traps insects to enhance indirect defence. Ecology Letters, 16, 219-224.

Levin, D. A. (1973). The role of trichomes in plant defence. The Quarterly Review of Biology, 48, 3-15.

Maatta-Riihinen, K. R., Kamal-Eldin, A., & Torronen, A. R. (2004). Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae). Journal of Agricultural and Food Chemistry, 52, 6178-6187.

Mullen, W., McGinn, J., Lean, M. E. J., MacLean, M. R., Gardner, P., Duthie, G. G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50, 5191-5196.

Patel, A. V., Rojas-Vera, J., & Dacke, C. G. (2004). Therapeutic Constituents and Actions of Rubus Species. Current Medicinal Chemistry, 11, 1501-1512.

Peiffer, M., Tooker, J. F., Luthe, D. S., & Felton, G. W. (2009). Plants on early alert: GT as sensors for insect herbivores. New Phytologist, 184, 644-656.

Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for

pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237-243.

Pohl, S. A. (2009). Untersuchungen zur möglichen Protokarnivorie von Lathraea squamaria, Salvia glutinosa und Rubus phoeniculasius (Diploma thesis). University of Vienna.

Price, M., & Butler, L. G. (1977). Rapid visual estimation and spectrophotometric determination of tannin content of Sorghum grain. Journal of Agricultural and Food Chemistry, 25, 1268-1273.

Ribeiro-Marinho, C., Poletti Martucci, M. A., Gobbo-Neto, L., & Pádua Teixeira, S. (2018). Chemical composition and secretion biology of the floral bouquet in legume trees (Fabaceae). Botanical Journal of the Linnean Society, 187, 5-25.

Rischka, K., Richter, K., Hartwig, A., Kozielec, M., Slenzka, K., Sader, R, & Grunwald, I. (2010). Bio-inspired polyphenolic adhesives for medical and technical applications. In J. von Byern & I. Grunwald (Eds.), Biological Adhesive Systems From Nature to Technical and Medical Application (pp. 201-211). Vienna: Springer.

Roepke, W. (1932). Über "Harzwanzen" von Sumatra und Java. Miscellanea Zoologica Sumatrana, 68, 1-5.

Romero, G. Q., Souza, J. C., & Vasconcellos-Neto, J. C. (2008). Anti-herbivore protection by mutualistic spiders and the role of plant glandular trichomes. Ecology, 89, 3105-3115.

Roshchina, V. (2014). Model systems to study the excretory function of higher plants. Berlin: Springer.

Schilmiller, A. L., Last, R. L., & Pichersky, E. (2008). Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal, 54, 702-711.

Schnetzler, B. N., Teixeira, S. P., & Ribeiro-Marinho, C. R. (2017). Trichomes that secrete substances of a mixed nature in the vegetative and reproductive organs of some species of Moraceae. Acta Botanica Brasilica, 31, 392-402.

Schuh, R. T., & Slater, J. A. (1995). True bugs of the world (Hemiptera: Heteroptera): Classification and natural history. New York: Cornell University Press.

Seto, T., Tanaka, T., & Tanaka, O. (1984). β-glucosyl esters 19α-hydroxyursolic acid derivatives in leaves of Rubus species. Phytochemistry, 23, 2829-2834.

Simoneit, B. R. T., Medeiros, P. M., & Wollenweber, E. (2008). Triterpenoids as major components of the insect-trapping glue of Roridula species. Zeitschrift für Naturforschung, 63c, 625-630.

Sousa, E. A. (2016). How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Annals of Botany, 117, 533-540.

Sugiura, S., & Yamazaki, K. (2006). Consequences of scavenging behaviour in a plant bug associated with a glandular plant. Biological Journal of the Linnean Society, 88, 593-602.

Sulborska, A., & Weryszko-Chmielewska, E. (2014). Characteristics of the secretory structures in the flowers of Rosa rugosa Thunb. Acta Agrobotanica, 67, 13-24.

Tian, D., Tooker, J., Peiffer, M., Chung, S. H., & Felton, G. W. (2012). Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236, 1053-1066.

Tissier, A. (2012). Gland trichomes: What comes after expressed sequence tags? The Plant Journal, 70, 51-88.

Voigt, D., & Gorb, S. (2008). An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. Journal of Experimental Biology, 211, 2647-2657.

Voigt, D., & Gorb, S. (2010). Locomotion in a sticky terrain. Arthropod-Plant Interactions, 4, 69-79.

Wagner, G. J. (1991). Secreting GT: More than just hairs. Plant Physiology, 96, 675-679.

Wagner, G., Wang, E., & Shepherd, R. (2004). New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany (Lond), 93, 3-1.

Weirauch, C. (2008). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33, 229-274.

Werker, E. (2000). Trichomes diversity and development. In D. C. Hallahan & J. C. Gray (Eds.), Advances in Botanical Research, Plant trichomes (pp. 4-30). London: Academic Press.

Wheeler, A. G., & Krimmel, B. A. (2015). Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. Annual Review of Entomology, 60, 393-414.

Zhang, G., & Weirauch, C. (2011). Sticky predators: a comparative study of sticky glands in harpactorinae assassin bugs (Insecta: Hemiptera: Reduviidae). Acta Zoologica-Stockholm, 94, 1-10.

Zhang, J., Weirauch, C., Zhang, G., & Forero, D. (2015). Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics, 32, 538-554.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2019 Alejandra Jiménez-Pomárico, Jorge Luis Avila-Núñez, Alberto Oliveros-Bastidas, Foción Rojas Márquez, Marisabel Avendaño, Denys Uzcátegui, Rosa Virginia Mendoza, Delsy Dávila Vera, Luis Rojas, Rosa Aparicio

Descargas

Los datos de descargas todavía no están disponibles.