Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Genotoxic effects of mercury chloride on the Neotropical fish Andinoacara rivulatus (Cichlidae: Cichlasomatini)
PDF
HTML

Keywords

micronuclei
erythrocyte nuclear abnormalities
DNA damage
heavy metal
fish
micronúcleos
anomalías nucleares de eritrocitos
daño en el ADN
metal pesado
peces

How to Cite

Nirchio, M., Choco Ventimilla, O. J., Quizhpe Cordero, P. F., Hernández, J. G., & Oliveira, C. (2019). Genotoxic effects of mercury chloride on the Neotropical fish Andinoacara rivulatus (Cichlidae: Cichlasomatini). Revista De Biología Tropical, 67(4), 745–754. https://doi.org/10.15517/rbt.v67i4.34133

Abstract

Understanding the effects of heavy metals in aquatic ecosystems is of significant importance due to their potential to bioaccumulate at various trophic levels and induce damage in DNA. Mercury is considered one of the most dangerous heavy metals, causing chromosomal breakage (clastogenic event) or spindle dysfunction (aneugenic event), that can lead to the formation of encapsulated chromatin into a separate smaller nucleus, generally referred to as a micronucleus. We evaluated the sensitivity of the micronucleus test in the neotropical cichlid Andinoacara rivulatus (Günther 1860). The fish were divided into four groups of 16 individuals, and each group was placed in separate aquaria (140 L) provided with filtered water and constant aeration. Fish were exposed to mercury chloride (HgCl2) at doses 0.1, 0.25, and 0.50 mg/kg body weight, administered by intraperitoneal (IP) injection. Fish from the control group were injected with a physiologic solution. The following erythrocyte anomalies were identified: erythrocytes with micronuclei varying to some extent in size and position in the cytoplasm, blebbed nucleus, binucleated cell, nuclei showing a deep invagination toward the center (notched nuclei). Examination of blood smears demonstrated a higher level of micronucleus and notched erythrocytes in fish injected with HgCl2 than in the controls. There were significant differences in the frequency of micronucleated and notched erythrocytes among the groups exposed to mercury. Linear regression analysis revealed a positive relationship between the frequency of micronucleated and notched erythrocytes (P< 0.0001), with a moderately strong correlation coefficient (R= 0.737). We propose that, in addition to the two so far known mechanisms of micronucleus formation (spindle apparatus damage and chromosomal ruptures), chromatin fragmentation in notched nuclei resulting from a combination of the cytotoxic effects of mercury and mechanical stress, may be a third mechanism of micronuclei genesis.

https://doi.org/10.15517/rbt.v67i4.34133
PDF
HTML

References

Ali, F., El-Shehawi, A. M., & Seehy, M. A. (2008). Micronucleus test in fish genome: A sensitive monitor for aquatic pollution. African Journal of Biotechnology, 7(5), 606-612.

Al-Sabti, K., & Hardig, J. (1990). Micronucleus test in fish for monitoring the genotoxic effects of industrial waste products in the Baltic Sea, Sweden. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 97(1), 179-182.

Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutation Research/Genetic Toxicology, 343(2), 121-135.

Anual, Z. F. (2014). Exposure assessment for mercury and other metals in commonly consumed fish of west peninsular Malaysia (Doctoral dissertation). University of Canberra, Australia. Retrieved from http://www.canberra.edu.au/researchrepository/file/403f57d5-f954-4210-89cf-433251e64cb1/1/full_text.pdf

Ayllon, F., & Garcia-Vazquez, E. (2000). Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 467(2), 177-186.

Ayllon, F., & Garcia-Vazquez, E. (2001). Micronuclei and other nuclear lesions as genotoxicity indicators in rainbow trout Oncorhynchus mykiss. Ecotoxicology and Environmental Safety, 49(3), 221-225.

Bakar, S., Ashriya, A., Shuib, A. S., & Razak, S. A. (2014). Genotoxic effect of zinc and cadmium following single and binary mixture exposures in tilapia (Oreochromis niloticus) using micronucleus test. Sains Malaysiana, 43(7), 1053-1059.

Bianchi, J., Fernandes, T. C. C., & Marin-Morales, M. A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475-483.

Boatti, L., Rapallo, F., Viarengo, A., & Marsano, F. (2017). Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum. Environmental Toxicology, 32(2), 417-425.

Bolognesi, C., Perrone, E., Roggieri, P., Pampanin, D. M., & Sciutto, A. (2006). Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic Toxicology, 78, 93-98.

Buhl, K. J. (1997). Relative sensitivity of three endangered fishes, Colorado squawfish, bonytail, and razorback sucker, to selected metal pollutants. Ecotoxicology and Environmental Safety, 37(2), 186-192.

Carrasco, K. R., Tilbury, K. L., & Myers, M. S. (1990). Assessment of the Piscine Micronucleus Test as an in situ Biological indicator of Chemical Contaminant Effects. Canadian Journal of Fisheries and Aquatic Sciences. Journal Canadien Des Sciences Halieutiques et Aquatiques, 47(11), 2123-2136.

Catherine Ferens, M., & United States. Environmental Protection Agency. Office of Research and Development. (1974). A review of the physiological impact of mercurials. USA: U.S. Govt. Print. Off.

Catton, W. T. (1951). Blood cell formation in certain teleost fishes. Blood, 6(1), 39-60.

Çavaş, T., & Ergene-Gözükara, S. (2003). Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 538(1), 81-91.

Çavaş, T., & Ergene-Gözükara, S. (2005). Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquatic Toxicology, 74(3), 264-271.

Cestari, M. M., Lemos, P. M. M., Ribeiro, C. A. de O., Costa, J. R. M. A., Pelletier, E., Ferraro, M. V. M., Mantovani, M. S., & Fenocchio, A. S. (2004). Genetic damage induced by trophic doses of lead in the neotropical fish Hoplias malabaricus (Characiformes, Erythrinidae) as revealed by the comet assay and chromosomal aberrations. Genetics and Molecular Biology, 27(2), 270-274.

Costa, P. M., Lobo, J., Caeiro, S., Martins, M., Ferreira, A. M., Caetano, M., Vale, C., Delvalls, T. A., & Costa, M. H. (2008). Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): effects of metallic and organic contaminants. Mutation Research, 654(1), 29-37.

Ergene, S., Çavaş, T., Çelik, A., Köleli, N., Kaya, F., & Karahan, A. (2007). Monitoring of nuclear abnormalities in peripheral erythrocytes of three fish species from the Goksu Delta (Turkey): genotoxic damage in relation to water pollution. Ecotoxicology, 16(4), 385-391.

Fatima, M., Usmani, N., Mobarak Hossain, M., Siddiqui, M. F., Zafeer, M. F., Firdaus, F., & Ahmad, S. (2014). Assessment of genotoxic induction and deterioration of fish quality in commercial species due to heavy-metal exposure in an urban reservoir. Archives of Environmental Contamination and Toxicology, 67(2), 203-213.

Harding, S. M., Benci, J. L., Irianto, J., Discher, D. E., Minn, A. J., & Greenberg, R. A. (2017). Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 548(7668), 466-470.

Heddle, J. A., Cimino, M. C., Hayashi, M., Romagna, F., Shelby, M. D., Tucker, J. D., Vanparys, P., & MacGregor, J. T. (1991). Micronuclei as an index of cytogenetic damage: past, present, and future. Environmental and Molecular Mutagenesis, 18(4), 277-291.

Isani, G., Andreani, G., Cocchioni, F., Fedeli, D., Carpené, E., & Falcioni, G. (2009). Cadmium accumulation and biochemical responses in Sparus aurata following sub-lethal Cd exposure. Ecotoxicology and Environmental Safety, 72(1), 224-230.

Ivanova, L., & Popovska-Percinic, F. (2016). Micronuclei and nuclear abnormalities in erythrocytes from Barbel Barbus peloponnesius revealing genotoxic pollution of the river Bregalnica. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 159-166.

Jiraungkoorskul, W., Kosai, P., Sahaphong, S., Kirtputra, P., Chawlab, J., & Charucharoen, S. (2007). Evaluation of micronucleus test’s sensitivity in freshwater fish species. Research Journal of Environmental Sciences, 1(2), 56-63.

Junín, M., Rodríguez Mendoza, N., Heras, M., & Braga, L. (2008). Valoración preliminar de la utilización de bioindicadores de contaminación en algunas especies de peces del delta del río Paraná, argentina. Ciencias Ambientales, 1, 17-24.

Kandroo, M., Tripathi, N. K., & Sharma, I. (2015). Detection of micronuclei in gill cells and haemocytes of fresh water snails exposed to mercuric chloride. International Journal of Recent Scientific Research, 6(8), 5725-5730.

Matsumoto, F. E., & Cólus, I. M. S. (2000). Micronucleus frequencies in Astyanax bimaculatus (Characidae) treated with cyclophosphamide or vinblastine sulfate. Genetics and Molecular Biology, 23(2), 489-492.

Matsumoto, S. T., Mantovani, M. S., Malaguttii, M. I. A., Dias, A. L., Fonseca, I. C., & Marin-Morales, M. A. (2006). Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genetics and Molecular Biology, 29(1), 148-158.

Miller, B., Pötter-Locher, F., Seelbach, A., Stopper, H., Utesch, D., & Madle, S. (1998). Evaluation of the in vitro micronucleus test as an alternative to the in vitro chromosomal aberration assay: position of the GUM working group on the in vitro micronucleus test. Mutation Research/Reviews in Mutation Research, 410(1), 81-116.

Miller, R. C. (1973). The micronucleus test as an in vivo cytogenetic method. Environmental Realth Perspectives, 6, 167-170.

Mir, M. I., Khan, S., Bhat, S. A., Reshi, A. A., Shah, F. A., Balki, M. H., & Manzoor, R. (2014). Scenario of genotoxicity in fishes and its impact on fish industry. IOSR-JESTFT, 8(6), 2319-2402.

Mitchelmore, C. L., & Chipman, J. K. (1998). DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutation Research, 399(2), 135-147.

Monteiro, V., Cavalcante, D. G. S. M., Viléla, M. B. F. A., Sofia, S. H., & Martinez, C. B. R. (2011). In vivo and in vitro exposures for the evaluation of the genotoxic effects of lead on the Neotropical freshwater fish Prochilodus lineatus. Aquatic Toxicology, 104(3-4), 291-298.

Morcillo, P., Esteban, M. A., & Cuesta, A. (2017). Mercury and its toxic effects on fish. Environmental Science, 4, 386-402.

Nabi, S. (2014). Toxic Effects of Mercury. notoxicity of freshwater ecosystem shows DNA damage in preponderant fish as validated by in vivo micronucleus induction in gill and kidney erythrocytes. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 775, 20-30.

Ohe, T., Watanabe, T., & Wakabayashi, K. (2004). Mutagens in surface waters: a review. Mutation Research, 567, 109-149.

Özkan, F., Gündüz, S. G., Berköz, M., & Hunt, A. Ö. (2011). Induction of micronuclei and other nuclear abnormalities in peripheral erythrocytes of Nile tilapia, Oreochromis niloticus, following exposure to sublethal cadmium doses. Turkish Journal of Zoology, 35(4), 585-592.

Rocha, C., Cavalcanti, B., Pessoa, C. Ó., Cunha, L., Pinheiro, R. H., Bahia, M., & Burbano, R. M. R. (2011a). Comet assay and micronucleus test in circulating erythrocytes of Aequidens tetramerus exposed to methylmercury. In Vivo, 25(6), 929-933.

Rocha, C. A. M. da, Cunha, L. A. da, Pinheiro, R. H. da S., Bahia, M. de O., & Burbano, R. M. R. (2011b). Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury. Genetics and Molecular Biology, 34(4), 694-697.

Rodriguez-Cea, A., Ayllon, F., & Garcia-Vazquez, E. (2003). Micronucleus test in freshwater fish species: an evaluation of its sensitivity for application in field surveys. Ecotoxicology and Environmental Safety, 56(3), 442-448.

Rodríguez, A.P.C., Maciel, P. & Silva, L. C. P. 2017. Chronic Effects of Methylmercury on Astronotus ocellatus, an Amazonian Fish Species. Journal of Aquatic Pollution and Toxicology, 1, 1-14.

Rózalski, M., & Wierzbicki, R. (1979). Binding of mercury by chromatin of rats exposed to mercuric chloride. Environmental Research, 20(2), 465-469.

Saiki, M. K., Jennings, M. R., & May, T. W. (1992). Selenium and other elements in freshwater fishes from the irrigated San Joaquin valley, California. The Science of the Total Environment, 126(1), 109-137.

Salvagni, J., Ternus, R. Z., & Fuentefria, A. M. (2011). Assessment of the genotoxic impact of pesticides on farming communities in the countryside of Santa Catarina State, Brazil. Genetics and Molecular Biology, 34(1), 122-126.

Sanchez-Galan, S., Linde, A. R., & Garcia-Vazquez, E. (1999). Brown trout and European minnow as target species for genotoxicity tests: differential sensitivity to heavy metals. Ecotoxicology and Environmental Safety, 43(3), 301-304.

Savage, J. R. (2000). Micronuclei: pitfalls and problems. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 4(4):229-233.

Shah, P., Wolf, K., & Lammerding, J. (2017). Bursting the Bubble--Nuclear Envelope Rupture as a Path to Genomic Instability? Trends in Cell Biology, 27(8), 546-555.

Sharifuzzaman, S. M., Rahman, H., Ashekuzzaman, S. M., Islam, M. M., Chowdhury, S. R., & Hossain, M. S. (2016). Heavy Metals Accumulation in Coastal Sediments. In H. Hasegawa, I. M. M. Rahman, & M. A. Rahman (Eds.), Environmental Remediation Technologies for Metal-Contaminated Soils (pp. 21-42). Tokyo: Springer Japan.

Silva-Pereira, L. C., Cardoso, P. C. S., Leite, D. S., Bahia, M. O., Bastos, W. R., Smith, M. A. C., & Burbano, R. R. (2005). Cytotoxicity and genotoxicity of low doses of mercury chloride and methylmercury chloride on human lymphocytes in vitro. Brazilian Journal of Medical and Biological Research, 38(6), 901-907.

da Silva Souza, T., & Fontanetti, C. S. (2006). Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 605(1-2), 87-93.

Skerfving, S., Hansson, K., & Lindsten, J. (1970). Chromosome breakage in humans exposed to methyl mercury through fish consumption. Preliminary communication. Archives of Environmental Health, 21(2), 133-139.

Strunjak-Perovic, I., Coz-Rakovac, R., Topic Popovic, N., & Jadan, M. (2009b). Seasonality of nuclear abnormalities in gilthead sea bream Sparus aurata (L.) erythrocytes. Fish Physiology and Biochemistry, 35(2), 287-291.

Strunjak-Perovic, I., Topic Popovic, N., Coz-Rakovac, R., & Jadan, M. (2009a). Nuclear abnormalities of marine fish erythrocytes. Journal of Fish Biology, 74(10), 2239-2249.

Tasneem, S., & Yasmeen, R. (2018). Induction of Micronuclei and Erythrocytic Nuclear Abnormalities in Peripheral Blood of Fish Cyprinus carpio on Exposure to Karanjin. Iranian Journal of Toxicology, 12(2), 37-43.

Thier, R., Bonacker, D., Stoiber, T., Bohm, K. J., Wang, M., Unger, E., Bolt, H. M., & Degen, G. (2003). Interaction of metal salts with cytoskeletal motor protein systems. Toxicology Letters, 140, 75-81.

Torres de Lemos, C., Milan Rödel, P., Regina Terra, N., Cristina D’Avila de Oliveira, N., & Erdtmann, B. (2007). River water genotoxicity evaluation using micronucleus assay in fish erythrocytes. Ecotoxicology and Environmental Safety, 66(3), 391-401.

Udroiu, I. (2006). The micronucleus test in piscine erythrocytes. Aquatic Toxicology, 79(2), 201-204.

Vanparys, P., Deknudt, G., Vermeiren, F., Sysmans, M., & Marsboom, R. (1992). Sampling times in micronucleus testing. Mutation Research, 282(3), 191-196.

Vignardi, C. P., Hasue, F. M., Sartório, P. V., Cardoso, C. M., Machado, A. S. D., Passos, M. J., Santos, T. C., Nucci, J. M., Hewer, T. L., Watanabe, I. S., Gomes, V., & Phan, N. V. (2015). Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquatic Toxicology, 158, 218-229.

Wirzinger, G., Weltje, L., Gercken, J., & Sordyl, H. (2007). Genotoxic damage in field-collected three-spined sticklebacks (Gasterosteus aculeatus L.): a suitable biomonitoring tool? Mutation Research, 628(1), 19-30.

W.H.O. (1990). Methylmercury. Environmental health criteria 101. Geneva: World Health Organization.

Yadav, K. K., & Trivedi, S. P. (2009). Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere, 77(11), 1495-1500.

Zapata Restrepo, L. M., Orozco Jiménez, L. Y., Rueda Cardona, M., Echavarría, S. L., & Palacio Baena, J. A. (2016). Evaluación genotóxica del agua del Río Grande (Antioquia, Colombia) mediante frecuencia de eritrocitos micronucleados de Brycon henni (Characiformes: Characidae). Revista de Biología Tropical, 65(1), 405-414.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Mauro Nirchio, Oscar Jesús Choco Ventimilla, Patricio Freddy Quizhpe Cordero, José Gregorio Hernández, Claudio Oliveira

Downloads

Download data is not yet available.