Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Spatio-temporal variations of the spectral response in mangroves of Havana, Cuba, by remote sensing
PDF
HTML (Español (España))

Keywords

coastal wetlands
NDVI
EVI
ecological indicators
historical trends
humedales costeros
NDVI
EVI
indicadores ecológicos

How to Cite

Denis Ávila, D., Curbelo, E. A., Madrigal-Roca, L. J., & Pérez-Lanyau, R. D. (2020). Spatio-temporal variations of the spectral response in mangroves of Havana, Cuba, by remote sensing. Revista De Biología Tropical, 68(1), 321–335. https://doi.org/10.15517/rbt.v68i1.39134

Abstract

Spatio-temporal variations of the spectral response in mangroves of Havana, Cuba, by remote sensing. Introduction: Mangroves are one of the most important forest types because of their ecosystem services and ecological roles. They represent 5 % of the emerged land of Cuba. No previous studies are describing spectral vegetation indexes variations by remote sensing in Cuban mangroves, but these variables can be used as indicators of the conservation status of the ecosystem and sustain national wide assessments. Objective: in the current paper we describe spatial and temporal variations in two spectral vegetation indexes in four near-city mangroves at Havana, Cuba and compare them to a natural control site. Methods: Study was conducted in localities named: Bajo de Santa Ana, Cojímar, Rincón de Guanabo, and El Cobre – Itabo lagoon and as control site was selected northern Zapata swamp. By using Climate Engine platform we extract, from 2 460 Landsat satellite images, mean values of spectral indexes NDVI and EVI in 5 parcels per locality, from 1984 to 2019. Variables were statistically compared among localities and the global trend was described. Results: We detect geographic differences in both indexes, which can be related to structural properties and conservation degree of mangroves in each locality. Global trend of indexes was to increase, but differently among localities. Slighter changes appear in the control site and, among near city mangroves, in Rincon de Guanabo and Cojímar. The ordering of localities from spectral variables was consistent with the ranking in general conservation degree. Conclusions: Spectral responses describe uniquely each mangrove forest, in concordance to each ecological and conservation characteristics. There is a need for promoting studies using remote sensors at these forest types and to generate strong and reliable indicators that can sustain future researches and monitoring schemes in Caribbean mangroves.

https://doi.org/10.15517/rbt.v68i1.39134
PDF
HTML (Español (España))

References

Al Habshi, A., Youssef, T., Aizpuru, M., & Blasco, F. (2007). New mangrove ecosystem data along the UAE coast using remote sensing. Aquatic Ecosystem Health and Management, 10(3), 309-319.

Alongi, D.M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349.

Asner, G. (1998). Fuentes biofísicas y bioquímicas de variabilidad en la reflectancia del dosel. Teledetección del Medio Ambiente, 64, 234-253.

Boon, B., Zubir, M., Jafri, M., & Hwee, L. (2011). Reflectance Characteristic of Certain Mangrove Species at Matang Mangrove Forest Reserve, Malaysia. Presentado en Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace). Penang, Malaysia.

Cissell, J.M., & Steinberg, J.R. (2018). Mapping forty years of mangrove cover trends and their implications for flats fisheries in Ciénaga de Zapata, Cuba. Environmental Biology of Fishes, Springer Nature. DOI: 10.1007/S10641-018-0809-0

Climate Engine (2019): [Software]. Recuperado de https://app.climateengine.org/climateEngine

Huntington, J. L., Hegewisch, K.C., Daudert, B., Morton, C. G., Abatzoglou, J. T., Mcevoy, D. J., & Erickson, T. (2017). Climate Engine. Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. American Meteorological Society, BAMS, 2397-2409. DOI: 10.1175/BAMS-D-15-00324.1

Ellison, A.M., & Farnsworth, E.J. (1996). Anthropogenic disturbance of Caribbean mangrove ecosystems: past impacts, present needs, and future predictions. Biotropica, 28, 549-565.

Everitt, J.H., Yang, C., Summy, K.R., Judd, F.W., & Davis, M.R. (2007). Evaluation of color-infrared photography and digital imagery to map black mangrove on the Texas Gulf Coast. Journal of Coastal Research, 23(1), 230-235.

Galford, G.L., Fernandez, M., Roman, J., Monasterolo, I., Ahamed, S., Fiske, G. … Kaufman, L. (2018). Cuban land use and conservation, from rainforests to coral reefs. Bulletim of Marine Science, 94(2). DOI: 10.5343/bms.2017.1026

Gilman, E., Ellison, J., Duke, N.C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89, 2, 237-250.

Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154-159.

Green, E.P., Clark, C., Mumby, P.J., Edwards, A. J., & Ellis, A. C. (1998) Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19, 935-956.

Green, E.P., Mumby, P.J., Edwards, A. J., Clark, C.D., & Ellis, A. C. (1997). Estimating leaf area index of mangroves from satellite data. Aquatic Botany, 58(1), 11-19.

Guzmán, J. M., & Menéndez, L. (2013). Protocolo para el monitoreo del ecosistema de manglar. La Habana, Cuba: CNAP.

Hardisky, M.A., Gross, M.F., & Klemas, V. (1986). Remote sensing of coastal wetlands. Bioscience, 36, 453-460.

Heumann, B.W. (2011). Satellite remote sensing of mangrove forests: recent advances and future opportunities. Progress in Physical Geography, 35(1), 87-108.

Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295-309.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002) Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83, 195-213.

Jensen, J.R., Lin, H., Yang, X., Ramsey III, E., Davis, B.A., & Thoemke, C.W. (1991). The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data. Geocarto International, 6(2), 13-21.

Kamaruzaman, J., & Kasawani, I. (2007). Imaging spectrometry on mangrove species identification and mapping in Malaysia. Wseas Transactions on Biology and Biomedicine, 8(4), 118-126.

Kovacs, J.M., Wang, J., & Blanco-Correa, M. (2001). Mapping disturbance in a mangrove forest using multi-date Landsat imagery. Environmental Management, 27(5), 763-776.

Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., & Sousa, W.P. (2008). Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 89, 105-127.

Kuenzer, C., Bluemel, A., Gebhardt, S., Vo Quoc, T., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3, 878-928.

Menéndez, L., & Guzmán, J.M. (Eds.) (2006). El ecosistema de manglar en el archipiélago cubano: estudios y experiencias enfocadas a su gestión. La Habana. Cuba: Editorial Academia.

Menéndez, L., Guzmán, J.M., & Capote, R.T. (2002). Los manglares del archipiélago cubano: aspectos de su funcionamiento. En J.J. Neiff (Ed.), Humedales de Iberoamérica (pp. 237-251). Argentina: CYTED, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo.

Nagelkerken, I., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., & Kirton, L.G. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89, 155-185.

Nayak, S., Anjali, B. & Shah, D.G. (2003). Community zonation of selected mangrove habitat of India using satellite data. Scientific Note.

Pastor-Guzmán, J., Dasha, J., & Atkinson, P.M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sensing of Environment, 205, 71-84.

Roman, J. (2018). The ecology and conservation of Cuba’s coastal and marine ecosystems. Bulletin of Marine Science, 94(2), 149-169.

Satyanarayana, B., Mohamad, K.A., Idris, I.F., Husain, M.L., & Dahdouh-Guebas, F. (2011) Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. International Journal of Remote Sensing 32 (6), 1635-1650

Pinheiro, M.A.B., de Carvalho, M., da Rocha, J., Chaves, M.E.D., de Azevedo Silva, P.A., Alacoque, J.G., & Trindade, F.S. (2019). Modelagem espectro-temporal do NDVI obtido de imagens Landsat 7 e 8 aplicado na cafeicultura. Presentado en Anais do XIX Simpòsio Brasileiro de Sensoriamento Remoto. INPE, Santos, Brasil.

Shah, G.D., & Anjali, B. (2007). Mangrove spectral signatures: The need for hyper spectral. NRDMS-DST Advanced Working Group Meet on Hyperspectral Signature Database Management System- A Development Perspective.

StatSoft, Inc. (2007). STATISTICA (data analysis software system) (version 8.0). Recuperado de www.statsoft.com

Suárez, R. (2011). Estado de salud de los ecosistemas de manglar de La Habana, Cuba (Tesis de pregrado). Universidad de La Habana, Cuba.

Thangaradjou, T., Sivakumar, K., Anantharaman, P., & Kannan, L. (2007). Hyperspectral signatures for coastal and marine resources. Extended abstract volume of NRDMS-DST advanced working group meet on hyperspectral signature database management system- A development perspective, pp. 56-59.

Thomas, N., Bunting, P., Hardy, A., Lucas, R., Rosenqvist, A., & Fatoyinbo, T. (2018). Mapping mangrove baseline and time-series change extent: A global monitoring approach. Remote Sensing, 10, 1466-1486.

Tong, P.H.S., Auda, Y., Populus, J., Aizpuru, M.., Al-Habshi, A., & Blasco, F. (2004). Assessment from space of mangrove evolution in the Mekong Delta, in relation to extensive shrimp farming. International Journal of Remote Sensing, 25, 4795-4812.

Underwood, A.J. (1992). Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. Journal of Experimental Marine Biology and Ecology, 161, 145-178.

Vaiphasa, C., Skidmore, A.K., & Boer, de W.F. (2005). A post-classifier for mangrove mapping using ecological data. ISPRS Journal of Photogrammetry and Remote Sensing, 61(1), 1-10.

Valiela, I., Bowen, J.L., & York, J.K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. BioScience, 51(10), 807-815.

Ventura, D., Fuente, A., Vicente, P., Isse, M., & Rodríguez-Ochoa, A. (2017). Evaluación cuantitativa de las afectaciones en la estructura de la vegetación en dos manglares de La Habana, Cuba. Informe de Trabajo Biológico de Campo II. Facultad de Biología, Universidad de La Habana, Cuba.

Wang, L., Sousa, W.P., Gong, P., & Biging, G.S. (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91(3), 432-440.

Xue, S., Hai-Shan, C., & Zhi Hua, G. (2011). Remote Sensing of Mangrove Wetlands Identification. Procedia Environmental Sciences, 10, 2287-2293.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Dennis Denis

Downloads

Download data is not yet available.