Resumen
Introducción: Los manglares son una de las formaciones vegetales de mayor relevancia global por los servicios ecosistémicos y roles ecológicos que desempeñan, y representan el 5 % de la superficie emergida de Cuba. No existen estudios previos que describan las variaciones en los índices espectrales de vegetación por sensores remotos en los manglares cubanos, pero con este tipo de variable se pueden constituir indicadores del estado de estos ecosistemas y emplearse en evaluaciones a nivel nacional. Objetivo: En el presente trabajo se evalúa la variabilidad espacial y temporal de dos índices espectrales de vegetación en cuatro manglares periurbanos de la ciudad de La Habana y se comparan con un sitio natural como control. Métodos: El estudio se desarrolló en las localidades de Bajo de Santa Ana, Cojímar, Rincón de Guanabo y la laguna El Cobre – Itabo y el control fue tomado en la ciénaga de Zapata. A través de la plataforma Climate Engine se extrajeron, de 2 460 imágenes satelitales LandSat, los valores promedio de los índices espectrales NDVI y EVI en 5 parcelas por cada localidad de estudio, entre 1984 y 2019. Las variables se compararon estadísticamente entre localidades y se describió su tendencia a lo largo del periodo de estudio. Resultados: Se detectaron diferencias geográficas en los índices, que pueden correlacionarse con las propiedades estructurales y grado de conservación de cada localidad. La tendencia global de los índices fue a un aumento, pero difirió entre localidades. Los menores cambios se produjeron en el sitio control y, entre los humedales periurbanos, en el Rincón de Guanabo y en Cojímar. El ordenamiento de las localidades a partir de variables espectrales fue consistente con el de grado de conservación general. Conclusiones: La respuesta espectral permitió caracterizar cada manglar de manera individualizada, mostrando relación aparente con las características ecológicas y de conservación de cada lugar. Es necesario continuar promoviendo estudios con sensores remotos de estas formaciones boscosas y generar indicadores sólidos que sustenten su uso en futuras investigaciones y monitoreos en manglares del Caribe.
Citas
Al Habshi, A., Youssef, T., Aizpuru, M., & Blasco, F. (2007). New mangrove ecosystem data along the UAE coast using remote sensing. Aquatic Ecosystem Health and Management, 10(3), 309-319.
Alongi, D.M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349.
Asner, G. (1998). Fuentes biofísicas y bioquímicas de variabilidad en la reflectancia del dosel. Teledetección del Medio Ambiente, 64, 234-253.
Boon, B., Zubir, M., Jafri, M., & Hwee, L. (2011). Reflectance Characteristic of Certain Mangrove Species at Matang Mangrove Forest Reserve, Malaysia. Presentado en Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace). Penang, Malaysia.
Cissell, J.M., & Steinberg, J.R. (2018). Mapping forty years of mangrove cover trends and their implications for flats fisheries in Ciénaga de Zapata, Cuba. Environmental Biology of Fishes, Springer Nature. DOI: 10.1007/S10641-018-0809-0
Climate Engine (2019): [Software]. Recuperado de https://app.climateengine.org/climateEngine
Huntington, J. L., Hegewisch, K.C., Daudert, B., Morton, C. G., Abatzoglou, J. T., Mcevoy, D. J., & Erickson, T. (2017). Climate Engine. Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. American Meteorological Society, BAMS, 2397-2409. DOI: 10.1175/BAMS-D-15-00324.1
Ellison, A.M., & Farnsworth, E.J. (1996). Anthropogenic disturbance of Caribbean mangrove ecosystems: past impacts, present needs, and future predictions. Biotropica, 28, 549-565.
Everitt, J.H., Yang, C., Summy, K.R., Judd, F.W., & Davis, M.R. (2007). Evaluation of color-infrared photography and digital imagery to map black mangrove on the Texas Gulf Coast. Journal of Coastal Research, 23(1), 230-235.
Galford, G.L., Fernandez, M., Roman, J., Monasterolo, I., Ahamed, S., Fiske, G. … Kaufman, L. (2018). Cuban land use and conservation, from rainforests to coral reefs. Bulletim of Marine Science, 94(2). DOI: 10.5343/bms.2017.1026
Gilman, E., Ellison, J., Duke, N.C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89, 2, 237-250.
Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154-159.
Green, E.P., Clark, C., Mumby, P.J., Edwards, A. J., & Ellis, A. C. (1998) Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19, 935-956.
Green, E.P., Mumby, P.J., Edwards, A. J., Clark, C.D., & Ellis, A. C. (1997). Estimating leaf area index of mangroves from satellite data. Aquatic Botany, 58(1), 11-19.
Guzmán, J. M., & Menéndez, L. (2013). Protocolo para el monitoreo del ecosistema de manglar. La Habana, Cuba: CNAP.
Hardisky, M.A., Gross, M.F., & Klemas, V. (1986). Remote sensing of coastal wetlands. Bioscience, 36, 453-460.
Heumann, B.W. (2011). Satellite remote sensing of mangrove forests: recent advances and future opportunities. Progress in Physical Geography, 35(1), 87-108.
Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295-309.
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002) Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83, 195-213.
Jensen, J.R., Lin, H., Yang, X., Ramsey III, E., Davis, B.A., & Thoemke, C.W. (1991). The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data. Geocarto International, 6(2), 13-21.
Kamaruzaman, J., & Kasawani, I. (2007). Imaging spectrometry on mangrove species identification and mapping in Malaysia. Wseas Transactions on Biology and Biomedicine, 8(4), 118-126.
Kovacs, J.M., Wang, J., & Blanco-Correa, M. (2001). Mapping disturbance in a mangrove forest using multi-date Landsat imagery. Environmental Management, 27(5), 763-776.
Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., & Sousa, W.P. (2008). Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 89, 105-127.
Kuenzer, C., Bluemel, A., Gebhardt, S., Vo Quoc, T., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3, 878-928.
Menéndez, L., & Guzmán, J.M. (Eds.) (2006). El ecosistema de manglar en el archipiélago cubano: estudios y experiencias enfocadas a su gestión. La Habana. Cuba: Editorial Academia.
Menéndez, L., Guzmán, J.M., & Capote, R.T. (2002). Los manglares del archipiélago cubano: aspectos de su funcionamiento. En J.J. Neiff (Ed.), Humedales de Iberoamérica (pp. 237-251). Argentina: CYTED, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo.
Nagelkerken, I., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., & Kirton, L.G. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89, 155-185.
Nayak, S., Anjali, B. & Shah, D.G. (2003). Community zonation of selected mangrove habitat of India using satellite data. Scientific Note.
Pastor-Guzmán, J., Dasha, J., & Atkinson, P.M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sensing of Environment, 205, 71-84.
Roman, J. (2018). The ecology and conservation of Cuba’s coastal and marine ecosystems. Bulletin of Marine Science, 94(2), 149-169.
Satyanarayana, B., Mohamad, K.A., Idris, I.F., Husain, M.L., & Dahdouh-Guebas, F. (2011) Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. International Journal of Remote Sensing 32 (6), 1635-1650
Pinheiro, M.A.B., de Carvalho, M., da Rocha, J., Chaves, M.E.D., de Azevedo Silva, P.A., Alacoque, J.G., & Trindade, F.S. (2019). Modelagem espectro-temporal do NDVI obtido de imagens Landsat 7 e 8 aplicado na cafeicultura. Presentado en Anais do XIX Simpòsio Brasileiro de Sensoriamento Remoto. INPE, Santos, Brasil.
Shah, G.D., & Anjali, B. (2007). Mangrove spectral signatures: The need for hyper spectral. NRDMS-DST Advanced Working Group Meet on Hyperspectral Signature Database Management System- A Development Perspective.
StatSoft, Inc. (2007). STATISTICA (data analysis software system) (version 8.0). Recuperado de www.statsoft.com
Suárez, R. (2011). Estado de salud de los ecosistemas de manglar de La Habana, Cuba (Tesis de pregrado). Universidad de La Habana, Cuba.
Thangaradjou, T., Sivakumar, K., Anantharaman, P., & Kannan, L. (2007). Hyperspectral signatures for coastal and marine resources. Extended abstract volume of NRDMS-DST advanced working group meet on hyperspectral signature database management system- A development perspective, pp. 56-59.
Thomas, N., Bunting, P., Hardy, A., Lucas, R., Rosenqvist, A., & Fatoyinbo, T. (2018). Mapping mangrove baseline and time-series change extent: A global monitoring approach. Remote Sensing, 10, 1466-1486.
Tong, P.H.S., Auda, Y., Populus, J., Aizpuru, M.., Al-Habshi, A., & Blasco, F. (2004). Assessment from space of mangrove evolution in the Mekong Delta, in relation to extensive shrimp farming. International Journal of Remote Sensing, 25, 4795-4812.
Underwood, A.J. (1992). Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. Journal of Experimental Marine Biology and Ecology, 161, 145-178.
Vaiphasa, C., Skidmore, A.K., & Boer, de W.F. (2005). A post-classifier for mangrove mapping using ecological data. ISPRS Journal of Photogrammetry and Remote Sensing, 61(1), 1-10.
Valiela, I., Bowen, J.L., & York, J.K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. BioScience, 51(10), 807-815.
Ventura, D., Fuente, A., Vicente, P., Isse, M., & Rodríguez-Ochoa, A. (2017). Evaluación cuantitativa de las afectaciones en la estructura de la vegetación en dos manglares de La Habana, Cuba. Informe de Trabajo Biológico de Campo II. Facultad de Biología, Universidad de La Habana, Cuba.
Wang, L., Sousa, W.P., Gong, P., & Biging, G.S. (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91(3), 432-440.
Xue, S., Hai-Shan, C., & Zhi Hua, G. (2011). Remote Sensing of Mangrove Wetlands Identification. Procedia Environmental Sciences, 10, 2287-2293.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2020 Dennis Denis