Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Numerical simulation of wave field around Cocos Island, Costa Rica.
PDF (Español (España))
HTML (Español (España))

Keywords

significant wave height; unstructured mesh generation; Cocos Island; swell; Eastern Tropical Pacific; WAVEWATCH III.
altura significante de la ola; generador de mallas no estructuradas; Isla del Coco; marejada de fondo; Pacífico Tropical del Este; WAVEWATCH III.

How to Cite

Mora-Escalante, R. E., & Ureña-Mora, J. P. (2020). Numerical simulation of wave field around Cocos Island, Costa Rica. Revista De Biología Tropical, 68(S1), S198–S212. https://doi.org/10.15517/rbt.v68iS1.41181

Abstract

Introduction: periodically energetic waves, originated in the Southern Ocean, arrive to Cocos Island, because of its location in the Pacific Ocean and in deep waters. The island acts as a shelter dissipating part of the energy of the waves that reach the Pacific coast of Costa Rica. Objetive: The objective of the work is to characterize the general conditions of the swell through the numerical simulation of the swell in the Eastern Tropical Pacific (ETP), with special interest in Cocos Island. Methods: The waves are propagated with the WAVEWATCH III wave spectral model. An unstructured mesh is used in the model. Two years (2007-2008) of hindcast data are used as boundary conditions obtained from reanalysis with the WAVEWATCH model, generated by the French Institute for Marine Research (IFREMER for its acronym in French). Annual and seasonal maps and time series of significant wave height, peak period and peak wave direction are obtained. Results: The results shown are similar to other previous simulation and observation studies. The mean wave field is characterized by long periods from southwest direction. The wave conditions on the island obey the extratropical systems of both hemispheres and local processes in the PTE. Conclusions: The WAVEWATCH III wave model showed that it represents the typical wave conditions in the surroundings of Cocos Island. It is the first wave simulation work applying an unconventional mesh in the exclusive economic zone of Costa Rica. The study serves as a basis for extending to other specific areas of the coast.

https://doi.org/10.15517/rbt.v68iS1.41181
PDF (Español (España))
HTML (Español (España))

References

Avdis, A., Candy, A. S., Hill, J., Kramer, S. C., & Piggott, M. D. (2018). Efficient unstructured mesh generation for marine renewable energy applications. Renewable Energy, 116, 842-856.

Alves, J. H. G. (2006). Numerical modeling of ocean swell contributions to the global wind-wave climate. Ocean Modelling, 11(1-2), 98-122.

Amador, J. A., Alfaro, E. J., Lizano, O. G., & Magaña, V. O. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 101-142.

Amador, J. A., Durán-Quesada, A. M., Rivera, E. R., Mora, G., Sáenz, F., Calderón, B., & Mora, N. (2016). The easternmost tropical Pacific. Part II: Seasonal and intraseasonal modes of atmospheric variability. Revista de Biología Tropical, 23-57.

Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A…Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9), 1917-1941.

Ardhuin, F., & Roland, A. (2012). Coastal wave reflection, directional spread, and seismoacoustic noise sources. Journal of Geophysical Research: Oceans, 117(11).

Booij, N., Holthuijsen, L. H., & Ris, R. C. (1996). The” SWAN” wave model for shallow water. Coastal Engineering Proceedings, 1(25).

Csık, A., Ricchiuto, M., & Deconinck, H. (2002). A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. Journal of computational physics, 179(1), 286-312.

Chen, G., Chapron, B., Ezraty, R., & Vandemark, D. (2002). A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. Journal of Atmospheric and Oceanic Technology, 19(11), 1849-1859, DOI: doi.org/10.1175/15200426(2002)019<1849:AGVOSA>2.0.CO;2

Cortés, J. (2016). The Pacific coastal and marine ecosystems. In M. Kapelle (Ed.), Costa Rican Ecosystems (pp. 97-138). Chicago and London: University of Chicago Press.

Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R. A., Zijlema, M., … & Westerink, H. J. (2012). Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge. Journal of Scientific Computing, 52(2), 468-497.

Geuzaine, C., & Remacle, J. F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331.

Glynn, P. W., Alvarado, J. J., Banks, S., Cortés, J., Feingold, J. S., Jiménez, C., ... & Navarrete, S. (2017). Eastern Pacific coral reef provinces, coral community structure and composition: an overview. In P. W. Glynn, P. Manzello, & I. C. Enochs (Eds.), Coral Reefs of the Eastern Tropical Pacific, (pp. 107-176). Dordrecht, Netherlands: Springer.

Guzmán, H. M., & Cortés, J. (1992). Cocos Island (Pacific of Costa Rica) coral reefs after the 1982-83 El Niño disturbance. Revista de Biología Tropical, 40(3), 309-324.

Hasselmann, S., Hasselmann, K., Allender, J. H., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391.

Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 181-217.

Lizano, O. G. & Moya, R. J. (1990). Simulación de oleaje durante el huracán Joan (1988) a su paso por el mar Caribe de Costa Rica. Revista Geofísica, (33), 105-126.

Lizano, O. G. (2001). Batimetría de la plataforma insular alrededor de la Isla del Coco, Costa Rica, Centro América. Revista de Biología Tropical, 49 (Suplemento 2), 163-170.

Lizano, O. G., Ocampo, F. J., Alvarado, L. F., Vega, R. & Puig, J. M. (2001). Evaluación de modelos numéricos de Tercera Generación para el pronóstico del oleaje en Centroamérica y México. Tópicos Meteorológicos y Oceanográficos, 8(1), 40-49.

Lizano, O. G. (2007). Climatología del viento y oleaje frente a las costas de Costa Rica. Ciencia y Tecnología, 25(1-2), 43-56.

Lizano, O. G. (2008). Dinámica de las aguas alrededor de la Isla del Coco, Costa Rica. Revista de Biología Tropical, 56(Suplemento 2), 31-48.

Lizano, O. G. (2012). Rasgos morfológicos alrededor de la Isla del Coco y de sus montes submarinos vecinos, Pacífico de Costa Rica. Revista de Biología Tropical, 60(Suplemento 3), 43-51.

Lizano, O. G. (2017). Los accidentes acuáticos alrededor de nuestras costas y su relación con el estado del mar y de la atmósfera. Revista En Torno a la Prevención, 18, 07-14.

Luettich, R. A., & Westerink, J. J. (2004). Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX, 74. Retrieved from http://www.twdb.texas.gov/publications/reports/contracted_reports/doc/2002483450.pdf

Mardia, K. V., & Jupp, P. E. (2009). Directional statistics (Vol. 494). London, UK: John Wiley & Sons, Ltd.

Munk, W. H., & Snodgrass, F. E. (1957). Measurements of southern swell at Guadalupe Island. Deep Sea Research (1953), 4, 272-286.

Remacle, J. F., & Lambrechts, J. (2016). Fast and robust mesh generation on the sphere–application to coastal domains. Procedia engineering, 163, 20-32.

Rascle, N., & Ardhuin, F. (2013). A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modelling, 70, 174-188.

Roland, A. (2008). Development of WWM II Model: Spectral wave modelling on unstructured meshes. (Doctoral dissertation). Darmstadt University of Technology, Institute of Hydraulic and Water Resources Engineering, Germany.

Rojas, W., & Alvarado, G. E. (2012). Geología y contexto geotectónico de la Isla del Coco y la zona marítima frente al Pacífico central de Costa Rica. Revista de Biología Tropical, 60(Suplemento 3), 15-32.

Snodgrass, F. E., Hasselmann, K. F., Miller, G. R., Munk, W. H., & Powers, W. H. (1966). Propagation of ocean swell across the Pacific. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 259(1103), 431-497.

Shewchuk, J. R. (1996, May). Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In M. C. Lin & D. Manocha (Eds.), Applied computational geometry towards geometric engineering (pp. 203-222). Berlin, Germany: Springer.

Tolman, H. (2014). User Manual and system documentation of WAVEWATCH III version 4.18. Environmental Modeling Center, Marine Modeling and Analysis Branch.

Warren, I. R., & Bach, H. (1992). MIKE 21: a modelling system for estuaries, coastal waters and seas. Environmental Software, 7(4), 229-240.

Wyrtki, K. (1967). Circulation and water masses in the eastern equatorial Pacific Ocean. International Journal of Oceanology and Limnology, 1, 117-147.

Young, I. R. (1999). Seasonal variability of the global ocean wind and wave climate. International Journal of Climatology, 19(9), 931-950.

Zijlema, M. (2010). Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57(3), 267-277.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Revista de Biología Tropical

Downloads

Download data is not yet available.