Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Geographical distribution model of the fish Coryphaena hippurus (Perciformes: Coryphaenidae) according to climate change in the Pacific Oriental Tropical
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))


Coryphaena hippurus;
climate change;
RCP 8.5;
tropicalization of marine ecosystems
Coryphaena hippurus;
cambio climático;
RCP 8.5;
tropicalización ecosistemas marinos

How to Cite

Isaza-Toro, E., Selvaraj, J. J. ., & Giraldo, A. (2024). Geographical distribution model of the fish Coryphaena hippurus (Perciformes: Coryphaenidae) according to climate change in the Pacific Oriental Tropical. Revista De Biología Tropical, 72(1), e42716.


Introduction: Coryphaena hippurus is a species of commercial interest with a high migratory capacity, a characteristic that places it in tropical and subtropical environments, preferring areas with a temperature range between 21 and 30 °C and salinity close to 31 ppt. Although the population trend of C. hippurus is stable, the fishing of this resource is increasing and occupies important positions in the economy of the Eastern Tropical Pacific coastal countries, which demonstrates the need to design and strengthen conservation strategies for the adequate use of this resource. Given its location in tropical and subtropical environments, its availability and distribution could be affected by climate change. Objective: To analyze the current and future potential distribution of C. hippurus under climate change scenarios. Methods: Ten algorithms were used to model the potential distribution and current habitat suitability index of C. hippurus as a function of sea surface temperature, current salinity and velocity, and these results were then projected under the most extreme climate change scenario. Results: There were good performances with all the algorithms used, but the model generated with BIOCLIM (AUC: 0.89) was chosen because it also solves the problem of spatial and temporal bias found in the records of the species. The region of greatest habitat suitability for C. hippurus matches the oceanic fronts of the Eastern Tropical Pacific. Under future conditions of extreme climate change, the species distribution pattern indicates a contraction, relocation, and expansion of habitat south of the equator. Conclusions: Under conditions of extreme climate change, the distribution model for C. hippurus suggests a process of topicalization of marine ecosystems in the Eastern Tropical Pacific by 2100.
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))


Amorós, S., Gozzer, R., Melgar, V., & Rovegno, N. (2017). Peruvian mahi mahi fishery (Coryphaena hippurus) characterization and analysis of the supply chain. WWFMarine Program of WWF-Peru.

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., De Clerck, O., & Tittensor, D. (2018). Bio‐ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277–284.

Asto, C., Chaigneau, A., & Gutiérrez, D. (2019). Spatio-temporal variability of the equatorial front in the eastern tropical Pacific from remote sensing salinity data (2010-2015). Deep-Sea Research Part II: Topical Studies in Oceanography, 169-170, 104640.

Ateweberhan, M., & McClanahan, T. R. (2010). Relationship between historical sea-surface temperature variability and climate change-induced coral mortality in the western Indian Ocean. Marine Pollution Bulletin, 60(7), 964–970.

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327–338.

Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20(1), 1–9.

Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification And Regression Trees. In G. Tiao (Ed.), The Wadsworth statistics/probability series (Vol. II). Chapman & Hall.

Brosse, S., Guegan, J. F., Tourenq, J. N., & Lek, S. (1999). The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecological Modelling, 120(2-3), 299–311.

Brown, J. L. (2011). SDMtoolbox 2.0 User Guide.

Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5(7), e4095.

Cai, L. N., Xu, L. L., Tang, D. L., Shao, W. Z., Liu, Y., Zuo, J. C., & Ji, Q. Y. (2020). The effects of ocean temperature gradients on bigeye tuna (Thunnus obesus) distribution in the equatorial eastern Pacific Ocean. Advances in Space Research, 65(12), 2749–2760.

Cheung, W. W. L., Pinnegar, J., Merino, G., Jones, M. C., & Barange, M. (2012a). Review of climate change impacts on marine fisheries in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(3), 368–388.

Cheung, W. W. L., Meeuwig, J. J., Feng, M., Harvey, E., Lam, V. W. H., Langlois, T., Slawinski, D., Sun, C., & Pauly, D. (2012b). Climate-change induced tropicalisation of marine communities in Western Australia. Marine and Freshwater Research, 63(5), 415–427.

Coelho, M. T. P., Diniz‐Filho, J. A., & Rangel, T. F. (2019). A parsimonious view of the parsimony principle in ecology and evolution. Ecography, 42(5), 968–976.

Collette, B., Acero, A., Amorim, A. F., Boustany, A., Canales-Ramirez, C. Cardenas, G., Carpenter, K. E., de Oliveira-Leite, J., Di Natale, A., Fox, W., Fredou, F. L., Graves, J., Viera-Hazin, F. H., Juan-Jorda, M., Minte-Vera, C., Miyabe, N., Montano-Cruz, R., Nelson, R., Oxenford, H., … Yanez, E. (2011). Coryphaena hippurus. The IUCN Red List of Threatened Species 2011.

Cortés, J. (2012). Marine biodiversity of an eastern tropical pacific oceanic island, Isla del Coco, Costa Rica. Revista de Biologia Tropical, 60(S3), 131–185.

D’Croz, L., & O’Dea, A. (2007). Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuarine, Coastal and Shelf Science, 73(1-2), 325–340.

Dapp, D., Arauz, R., Spotila, J. R., & O’Connor, M. P. (2013). Impact of Costa Rican longline fishery on its bycatch of sharks, stingrays, bony fish and olive ridley turtles (Lepidochelys olivacea). Journal of Experimental Marine Biology and Ecology, 448, 228–239.

Duffy, L. M., Kuhnert, P. M., Pethybridge, H. R., Young, J. W., Olson, R. J., Logan, J. M., Goñi, N., Romanov, E., Allain, V., Staudinger, M. D., Abecassis, M., Choy, C. A., Hobday, A. J., Simier, M., Galván-Magaña, F., Potier, M., & Ménard, F. (2017). Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Research Part II: Topical Studies in Oceanography, 140(March), 55–73.

EcoCommons Australia. (2022). EcoCommons Australia – the platform of choice for ecological and environmental modelling.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813.

Evans, K., Arrizabalaga, H., Brodie, S., Chang, C. T., Llopiz, J., Phillips, J. S., & Weng, K. (2020). Comparative research on ocean top predators by CLIOTOP: Understanding shifts in oceanic biodiversity under climate change. Deep Sea Research Part II: Topical Studies in Oceanography, 175, 104822.

Farrell, E. R., Boustany, A. M., Halpin, P. N., & Hammond, D. L. (2014). Dolphinfish (Coryphaena hippurus) distribution in relation to biophysical ocean conditions in the northwest Atlantic. Fisheries Research, 151, 177–190.

França, S., & Cabral, H. N. (2016). Predicting fish species distribution in estuaries: Influence of species’ ecology in model accuracy. Estuarine, Coastal and Shelf Science, 180, 11–20.

Friedman, J. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1–67.

Furukawa, S., Tsuda, Y., Nishihara, G. N., Fujioka, K., Ohshimo, S., Tomoe, S., Nakatsuka, N., Kimura, H., Aoshima, T., Kanehara, H., Kitagawa, T., Chiang, W. C., Nakata, H., & Kawabe, R. (2014). Vertical movements of Pacific bluefin tuna (Thunnus orientalis) and dolphinfish (Coryphaena hippurus) relative to the thermocline in the northern East China Sea. Fisheries Research, 149, 86–91.

García-Roselló, E., Guisande, C., Heine, J., Pelayo-Villamil, P., Manjarrés-Hernández, A., González Vilas, L., González-Dacosta, J., Vaamonde, A., & Granado-Lorencio, C. (2014). Using ModestR to download, import and clean species distribution records. Methods in Ecology and Evolution, 5(7), 708–713.

Grados, C., Chaigneau, A., Echevin, V., & Dominguez, N. (2018). Upper ocean hydrology of the Northern Humboldt Current System at seasonal, interannual and interdecadal scales. Progress in Oceanography, 165, 123–144.

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models. Cambridge University Press.

Hallgren, W., Beaumont, L., Bowness, A., Chambers, L., Graham, E., Holewa, H., Laffan, S., Mackey, B., Nix, H., Price, J., Vanderwal, J., Warren, R., & Weis, G. (2016). The biodiversity and climate change virtual laboratory: Where ecology meets big data. Environmental Modelling and Software, 76, 182–186.

Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89(428), 1255–1270.

Hayhoe, K., Edmonds, J., Kopp, R. E., LeGrande, A. N., Sanderson, B. M., Wehner, M. F., & Wuebbles, D. J. (2017). Climate models, scenarios, and projections. In D. J. Wuebbles, D.W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.), Climate Science Special Report: Fourth National Climate Assessment (Vol. I, pp. 133–160).

Herrera-Montiel, S. A., Coronado-Franco, K. V., & Selvaraj, J. J. (2019). Predicted changes in the potential distribution of seerfish (Scomberomorus sierra) under multiple climate change scenarios in the Colombian Pacific Ocean. Ecological Informatics, 53, 100985.

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J.(2017). dismo: Species Distribution Modeling (“R Package”).

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. In N. A. C. Cressie et al. (Eds.), Wiley Series In Probability And Statistics. (2th ed). Wiley-Interscience Publication.

IATTC (Inter-American Tropical Tuna Commission). (2005). Annual Report of the Inter-American Tropical Tuna Commission.

IPCC (Intergovernmental Panel on Climate Change). (2014a). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. V. Barros et al. (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC (Intergovernmental Panel on Climate Change). (2014b). Climate Change 2014: Mitigation of Climate Change. In Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Isaza-Toro, E., Giraldo, A., Josephraj, J., & Ortíz-ferrín, O. O. (2020). Standardization of small purse seiner fishing effort and its relation to fishing grounds in the eastern tropical sector of the Eastern Pacific Ocean. Regional Studies in Marine Science, 39, 101432.

Lehodey, P. (2001). The pelagic ecosystem of the tropical Pacific Ocean: Dynamic spatial modelling and biological consequences of ENSO. Progress in Oceanography, 49(1-4), 439–468.

MacLeod, C. D., Mandleberg, L., Schweder, C., Bannon, S. M., & Pierce, G. J. (2008). A comparison of approaches for modelling the occurrence of marine animals. Hydrobiologia, 612(1), 21–32.

Manel, S., Williams, H. C., & Ormerod, S. (2001). Evaluating presence-absence models in ecology : The need to account for prevalence. Journal of Applied Ecology, 38, 921–931.

Martínez-Ortiz, J., Aires-Da-silva, A. M., Lennert-Cody, C. E., & Maunder, M. N. (2015). The ecuadorian artisanal fishery for large pelagics: Species composition and spatio-temporal dynamics. PLoS ONE, 10(8), 1–29.

Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415(2), 108837.

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069.

Merten, W., Appeldoorn, R., & Hammond, D. (2016). Movement dynamics of dolphinfish (Coryphaena hippurus) in the northeastern Caribbean Sea: Evidence of seasonal re-entry into domestic and international fisheries throughout the western central Atlantic. Fisheries Research, 175, 24–34.

Nieblas, A. E., Demarcq, H., Drushka, K., Sloyan, B., & Bonhommeau, S. (2014). Front variability and surface ocean features of the presumed southern bluefin tuna spawning grounds in the tropical southeast Indian Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 107, 64–76.

Olson, R. J. J., Young, J. W. W., Ménard, F., Potier, M., Allain, V., Goñi, N., Logan, J. M. M., & Galván-Magaña, F. (2016). Bioenergetics, trophic ecology, and niche separation of tunas. Advances in Marine Biology, 35(74), 199–344.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259.

Quinteros-Malpartida, S., & Ñiquen-Carranza, M. (2016). Plan de acción nacional para la conservación y manejo del recurso perico (Coryphaena hippurus) en el Perú (PAN PERICO - PERÚ). En Resolución Viceministerial 81-2016-PRODUCE/DVPA (p. 41). Ministerio de la Producción.

Rajesh, K. M., Rohit, P., & Abdussamad, E. M. (2016). Fishery, diet composition and reproductive biology of the dolphinfish Coryphaena hippurus (Linnaeus, 1758) off Karnataka, south-west coast of India. Indian Journal of Fisheries, 63(4), 35–40.

Ridgeway, G. (2007). Generalized boosted models: A guide to the gbm package. Compute, 1(4), 1–12.

Ripley, B. D. (1994). Neural networks and flexible regression and discrimination. Journal of Applied Statistics, 21, 39–57.

Shcheglovitova, M., & Anderson, R. P. (2013). Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9–17.

Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123.

Strychar, K. B., & Sammarco, P. W. (2009). Exaptation in corals to high seawater temperatures: Low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. Journal of Experimental Marine Biology and Ecology, 369(1), 31–42.

Svendsen, M. B. S., Domenici, P., Marras, S., Krause, J., Boswell, K. M., Rodriguez-Pinto, I., Wilson, A. D. M., Kurvers, R. H. J. M., Viblanc, P. E., Finger, J. S., & Steffensen, J. F. (2016). Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: A myth revisited. Biology Open, 5(10), 1415–1419.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.

Thuiller, W., Lafourcade, B., & Araujo, M. (2012). The Presentation Manual for BIOMOD. Université Joseph Fourier.

Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD - A platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373.

Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., De Clerck, O., Troupin, K., Mineur, F., & De Clerck, O. (2012). Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography, 21(2), 272–281.

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1), 5–31.

Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36(12), 2290–2299.

Venables, W. N., & Dichmont, C. M. (2004). GLMs, GAMs and GLMMs: An overview of theory for applications in fisheries research. Fisheries Research, 70(2-3 SPEC. ISS.), 319–337.

Verneil, A., Franks, P. J. S., & Ohman, M. D. (2019). Frontogenesis and the creation of fine‐scale vertical phytoplankton structure. Journal of Geophysical Research: Oceans, 124(3), 1509–1523.

Vetter, V. M. S., Tjaden, N. B., Jaeschke, A., Buhk, C., Wahl, V., Wasowicz, P., & Jentsch, A. (2018). Invasion of a legume ecosystem engineer in a cold biome alters plant biodiversity. Frontiers in Plant Science, 9, 715.

Whoriskey, S., Arauz, R., & Baum, J. K. (2011). Potential impacts of emerging mahi-mahi fisheries on sea turtle and elasmobranch bycatch species. Biological Conservation, 144(6), 1841–1849.

Zúñiga-Flores, M. S., Ortega-García, S., & Klett-Traulsen, A. (2008). Interannual and seasonal variation of dolphinfish (Coryphaena hippurus) catch rates in the southern Gulf of California, Mexico. Fisheries Research, 94(1), 13–17.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical


Download data is not yet available.