Abstract
Introduction: The distribution of aquatic macroinvertebrates in rivers may be determined by the type of substrate, the shape of the river channel, the hydrological regime, and interactions with biotic and abiotic factors. Variations in the distribution of aquatic macroinvertebrates due to transitions and variations in physicochemical and hydrological characteristics are unknown in most rivers. Objectives: 1) to study the change in the aquatic macroinvertebrates assemblages in two sites in Naranjo River, during the four hydrological seasons; 2) to determine the relationship between the physicochemical variables, substrate and flow with the assemblages. Methodology: The study was conducted in the Naranjo River, Costa Rica, at two sampling sites during one year, evaluating the four seasons of the year. In each station we measure, values of water velocity and depth, flow rate, dissolved oxygen, pH, conductivity, sulfates, ammonium, nitrate, silicates, phosphates, and substrate were obtained, and a sample of aquatic macroinvertebrates was obtained for each type of microhabitat determined by water velocity. Two-way PERMANOVA was made to determine if there is a difference among aquatic macroinvertebrate abundance, per period and between sites. Canonical correspondence analysis was used to observe the relationship between aquatic macroinvertebrates and environmental factors. Finally, a Spearman’s rank correlation coefficient was performed to determine the positive or negative relationship of variables with macroinvertebrates. Results: There was a greater abundance during the dry season, while during the transition from dry to the rainy season, the lowest abundance of organisms was recorded. The CCA indicates that the first axis presented a positive relationship with the silt and sand substrate and a negative relationship for the current velocity and rock substrate variables. The second axis showed a positive relationship with flow and nitrates and negative for the pebble substrate. Most organisms showed a negative response to increased flow and nitrates. Discussion: As flow increases, current velocity increases, and not all organisms recorded in the Naranjo River have the characteristics to survive these conditions. In addition, the depth also increases along with the drag force, causing movement of smaller substrates and removal of organisms. Increased nitrates can lead to a decrease in more sensitive organisms, such as Plecoptera and Ephemeroptera. In spite of the physicochemical and flow variations registered in the Naranjo River, these were not strong enough to vary the assemblages of aquatic macroinvertebrates, so the basin does not have stressful factors that eliminate organisms during one or several months of the year.
References
Allan, D., & Castillo, M. (2007). Stream ecology: Structure and function of running waters. 2nd Edition, Chapman and Hall, New York.
Appalasamy, S., Arumugam, N., Sukri, S., & Rak, A. E. (2018). Physico-chemical water quality and macroinvertebrate distribution along Sungai Asah in Pulau Tioman, Johor, Malaysia. Songklanakarin Journal of Science and Technology, 40(6), 1265–1270.
Bauer, R. (2011). Amphidromy and migrations of freshwater shrimps. II. Delivery of hatching larvae to the sea, return of juvenile upstream migration and human impacts. In: A. Asakura (Ed.). New frontiers in crustacean biology. Proceedings of the Crustacean Society Summer Meeting, Tokyo, Brill, Leiden.
Cauvy-Fraunié, S., Andino, P., Espinosa, R., Calvez, R., Jacobsen, D., & Dangles, O. (2016). Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications, 7, 1-7.
Contreras-Ramos, A., & Harris, S. (1998). The Immature Stages of Platyneuromus (Corydalidae), with a Key to the Genera of Larval Megaloptera of Mexico. Journal of the North American Benthological Society, 17(4), 489-517.
Degani, G., Herbst, G., Rotal, R., Bromley, H., Levanon, D., Netzer, Y., Harari, N., & Glazman, H. (1993). Relationship between current velocity depth and the invertebrate community in a stable river system. Hydrobiologia, 263(1), 163–172
Duan, X., Wang, Z., & Tian, S. (2008). Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2(1),122-128.
Dunbar, M. J., Pedersen, M. L., Cadman, D., Extence, C., Waddingham, J., Chadd, R., & Larsen, S. E. (2010). River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biology, 55(1), 226–242.
Extence, C. A., Balbi, D. M., & Chadd, R. P. (1999). River Flow Indexing using British Benthic Macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers Research & Management, 15(6), 543–574.
Ferru, M., & Fierro, P. (2015). Estructura de macroinvertebrados acuáticos y grupos funcionales tróficos en la cuenca del río Lluta, desierto de Atacama, Arica Y Parinacota, Chile. Idesia, 33(4), 47-54.
Flowers, W., & De la Rosa, C. (2010). Ephemeroptera. En: Springer, M., Ramírez, A. & Hanson, P. (Eds). Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical, 58(4), 63-93.
Fonnesu, A., Sabetta, L., & Basset, A. (2005). Factors affecting macroinvertebrate distribution in a mediterranean intermittent stream. Journal of Freshwater Ecology, 20 (4), 641-647.
Forero-Céspedes, A., Gutiérrez, C., & Reinoso-Flórez, G. (2016). Composición y estructura de la familia Baetidae (Insecta: Ephemeroptera) en una cuenca andina colombiana. Hidrobiológica, 26(3), 459-474.
Gao, C., & Ruan, T. (2017). The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River Basin, China. Journal of Geographical Sciences, 28(1), 79-92.
García-Guerrero, M., Becerril-Morales, F., Vega-Villasante, F., & Esponosa-Chaurand, L. (2013). Los langostinos del género Macrobrachium con importancia económica y pesquera en América Latina: conocimiento actual, rol ecológico y conservación. Latin American Journal of Aquatic Research, 41(4), 651-675.
Gil-Azevedo, L. & Da Santos, D. (2016). Family Blephariceridae. Zootaxa, 4122(1), 182-186.
Gordon, N., McMahon, T., & Finlayson, B. (2004). Stream hydrology an introduction for ecologists. John Wiley & Sons Ltd, West Sussex, England.
Hamada, N., Oliveria, J., Pepinelli, M., & Ribeiro, L. (2014). Ordem Diptera. En: Hamada, N., Nessimian, J., & Barbosa, R. (Eds). Insetos Aquáticos na Amazonia brasileira: taxonomia, biologia, e ecologia. Instituto Nacional de Pesquisas da Amazonia, Brasil.
Hanh, T., Eurie, M., Boets, P., Lock, K., Damanik, M., Suhareva, N., Everaert, G., Van der heyden, C., Domínguez-Granada, L., Thi, T., & Goethals, P. (2018). Threshold responses of macroinvertebrate communities to stream velocity in relation to hydropower dam: A case study from the Guayas River basin (Ecuador). Water, 10(1), 1-17.
Harding, JS., Young, RG., Hayes, JW, Shearer, KA., & Stark, JD. (1999). Changes in agriculture intensity and river health along river continuum. Freshwater Biology, 42, 345-357.
Harinkhede, P., & Manekar, A. (2016). Correlation aspects between macroinvertebrates and physicochemical factors to assess water quality of the River Vainganga. International Journal of Science and Research, 5 (8), 1582-1585.
Hill, G., Maddock, I., & Bickerton, M. (2013). Testing the relationship between surface flow types and benthic macroinvertebrates. In: Maddock, I, Harby, A., Kemp, P., & Wood, P. (Eds). Ecohydraulics. Wiley Blackwell. UK.
Horrigan, N., & Baird, D.J., (2008). Trait patterns of aquatic insects across gradients of flowrelated factors: a multivariate analysis of Canadian national data. Canadian Journal of Fisheries and Aquatic Sciences, 65, 670–680.
Kail, J., Arle, J., & Jähnig, S. C. (2012). Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: Empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecological Indicators, 18(1), 63–72.
Kassambara, A. (2019). Visualization of a Correlation Matrix using ‘ggplot2’. R package version 0.1.3.
Kubendran, T., & Ramesh, M. (2016). Composition and distribution of aquatic insect communities in relation to water quality in two freshwater streams of southern western ghats, India. Journal of Entomology and Zoology Studies, 4(5), 689-695.
Leopold, L., Wolman, G., & Miller, J. 1992. Fluvial processes in geomorphology. Dover Publication, New York, USA.
Manzo, V., & Archangelsky, M. (2008). A key to the known larvae of South American Elmidae (Coleoptera: Byrrhoidea), with a description of the mature larva of Macrelmis saltensis, Manzo. Annales de Limnologie - International Journal of Limnology, 44(1), 63–74.
McCord, S., & Kuhl, B. (2013). Macroinvertebrate community structure and its seasonal variation in the Upper Mississippi River, USA: a case study. Journal of Freshwater Ecology, 28(1), 63-78.
Mengzhen, X., Zhaoyin, W., Xuehua, D., & Baozhu, P. (2014). Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia, 729(1), 247-259.
Mesa, L. (2012). Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology, 55(3), 403-410.
Molina, C., Gibon, F., Pinto, J., & Rosales, C. (2008). Estructura de macroinvertebrados acuáticos en un río altoandino de la cordillera real, Bolivia: variación anual y longitudinal en relación a factores ambientales. Ecología Aplicada, 7 (1,2): 1-12.
Oksanen, J., Guillaume, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P., O’Hara, R., Simpson, G., Solymos, P., Stevens H., Szoecs E., & Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5-5.
Oliva, A. (2014). Distribution of the species of Berosini (Coleoptera: Hydrophilidae) in South America. Revista Colombiana de Entomología, 40(2), 272-280.
Oviedo-Macho, N., & Reinoso-Flórez, R. (2018). Aspectos ecológicos de larvas de Chironomidae (Diptera), del río Opia (Tolima, Colombia). Revista Colombiana de Entomología, 44(1), 101-109.
Pinder, L., (1995). The habitats of chironomid larvae. In P., Armitage, P., Cranston, & L. Pinder (Eds), The Chironomidae (pp. 107-135). Springer, Dordrecht.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ramírez, A. (2010). Odonata. En: Springer, M., Ramírez, A. & Hanson, P. (Eds). Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical, 58(4):97-136.
Rodrigues, H., & Sites, R. (2019). Revision of Limnocoris (Heteroptera: Nepomorpha: Naucoridae) of North America. Zootaxa, 4629(4), 451-497.
Roldán, G. (1998). Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia, Pama Editores Ltda. Bogotá, Colombia.
Roldán-Pérez, G. (2016). Los macroinvertebrados acuáticos como indicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y latinoamérica. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(155): 254-274.
Schoen, J., Merten, E., & Wellnitz, T. (2013). Current velocity as a factor in determining macroinvertebrate assemblages on wood surfaces. Journal of Freshwater Ecology, 28(2), 271-275.
Sefick, S. A., Kosnicki, E., Paller, M. H., & Feminella, J. W. (2018). Hydrogeomorphic reference conditions and its relationship with macroinvertebrate assemblages in Southeastern US Sand Hills streams. Journal of the American Water Resources Association, 54(9), 1-18
Serna, D., Tamaris-Turizo, C., & Gutiérrez, L. (2015). Distribución espacial y temporal de las larvas de Trichoptera (Insecta) en el río Manzanares, Sierra Nevada de Santa Marta (Colombia). Revista Biología Tropical, 63(2), 465-477.
Springer, M. (2010). Trichoptera. En: Springer, M., Ramírez, A. & Hanson, P. (Eds). Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical, 58(4), 63-93.
Springer, M. (2019). La colección de Entomología Acuática del Museo de Zoología, Universidad de Costa Rica: lista actualizada de géneros, importancia y retos futuros. Revista Biología Tropical, 67(2), 200-211.
Suhaila, A., Che, M., & Nurul, H. (2014). Seasonal abundance and diversity of aquatic insects in rivers in Gunung Jerai Forest Reserve, Malaysia. Sains Malaysiana, 43(5), 667-674.
Syvitski, J., Cohenb, S., Kettner, A., & Brakenridge, G. (2014). How important and different are tropical rivers? — An overview. Geomorphology, 227(1), 5-17
Tuskes, P., & Mcgowan-Tuskes, A. (2019). Aquatic Moths of the Genus Petrophila and their Biology in Oak Creek, Arizona (Crambidae). The Journal of the Lepidopterists Society, 73(1), 43-53.
Vörösmarty, C.J., McIntyre, P.B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy, C., & Davies, P. (2010). Global threats to human water security and river biodiversity. Nature, 467 (1), 555–561.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Worrall, T. P., Dunbar, M. J., Extence, C. A., Laizé, C. L. R., Monk, W. A., & Wood, P. J. (2014). The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability of macroinvertebrate community response to flow regime variability. Hydrological Sciences Journal, 59(3–4), 645–658.
Zamora, H. (2015). Macroinvertebrados acuáticos registrados durante la época de lluvias en tres ríos del piedemonte llanero colombiano. Revista Colombiana de Ciencia Animal, 7(2), 139-147.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Revista de Biología Tropical