Abstract
Introduction: Enough scientific evidence is available on the harmful effects of air pollution on the health of human beings, fauna, flora, and ecosystems in general. The mechanical and electronical monitoring networks are the first option for the air quality diagnosis, but they do not allow a direct and precise assessment of the impacts in living organisms that may result from the exposure to air pollutants. Objective: To evaluate the changes in the composition of corticulous lichen communities as a response to various stress factors in areas with different levels of air quality to diagnose the state of pollution or intervention in an area with a more complete option. Methods: Air quality contrasts and changes in richness and coverage of corticulous lichens in response to different stress factors, such as land use and distance to roads, in three different biomonitoring areas, were evaluate using GIS, and the data are presented in an easy-to-understand grey scale coded isoline map. Results: Indicators such as lichen coverage (R= -0.4) and richness (R= -0.7) are inverse correlated with PM2.5 concentrations in each area. A total of 110 lichen species were identified, being Phaeophyscia chloantha (Ach.) Moberg and Physcia poncinsii Hue the most frequent species (present in 38 and 33 % of the 86 sampled phorophytes, respectively). The intra-area relationships of lichen richness exhibit significant relationships with regards to the land use and distance to roads (with correlations coefficients greater than 0.5) and the Simpson index was higher than 0.9, in places with better conditions in terms of air quality and microenvironments, likewise the resistance factors calculated suggest that the most sensitive species can be found in environments with a lesser degree of disturbance. Conclusion: These evaluations represent more criteria elements for the diagnosis of the environmental health in the biomonitoring areas.
References
Aguiar-Gil, D., Gómez-Peláez, L. M., Álvarez-Jaramillo, T., Correa-Ochoa, M. A., & Saldarriaga-Molina, J. C. (2020). Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmospheric Environment, 224, 117343. https://doi.org/10.1016/j.atmosenv.2020.117343
Alcaldía de Medellín. (2021). Geomedellín. Portal gráfico del municipio de Medellín. Web Page. https://www.medellin.gov.co/geomedellin/index.hyg
AMVA & Clean Air Institute (2017). Plan integral de gestión de la calidad del aire para el área metropolitana del Valle de Aburrá 2017-2030. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/PIGECA/PIGECA-Aprobado-Dic-2017.pdf
Anze, R., Franken, M., Zaballa, M., Pinto, M. R., Zeballos, G., Cuadros, M. D. L. Á., Canseco, Á., Rocha, A. de, Estellano, V. H., & del Granado, S. (2007). Bioindicadores en la detección de la contaminación atmosférica en Bolivia. Revista Virtual REDESMA, 53–74. https://cebem.org/revistaredesma/vol1/pdf/redesma0101_art03.pdf
Aragón, G., Abuja, L., Belinchón, R., & Martínez, I. (2015). Edge type determines the intensity of forest edge effect on epiphytic communities. European Journal of Forest Res, 451, 443–451. https://doi.org/10.1007/s10342-015-0863-5
Augusto, S., Máguas, C., & Branquinho, C. (2013). Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses - A review. Environmental Pollution, 180, 330–338. https://doi.org/10.1016/j.envpol.2013.05.019
Barreno, E., & Pérez-Ortega, S. (2003). Líquenes de la Reserva Natural Integral de Muniellos, Asturias. Principado de Asturias. Ediciones KRK. https://doi.org/10.15713/ins.mmj.3
BID (2016). Estudios de casos internacionales de ciudades inteligentes: Medellín, Colombia (Documento para discusión Nº IDB-DP-443). Banco Interamericano de Desarrollo. https://publications.iadb.org/bitstream/handle/11319/7716/Estudios-de-casos-internacionales-de-ciudades-inteligentes-Medellin-Colombia.pdf?sequence=1
Cakmak, S., Hebbern, C., Pinault, L., Lavigne, E., Vanos, J., Crouse, D. L., & Tjepkema, M. (2018). Associations between long-term PM2.5 and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. Environment International, 111, 200–211. https://doi.org/10.1016/j.envint.2017.11.030
Castro, M., Pinho, P., Llop, E., Branquinho, C., Soares, A., & Joa, M. (2014). Associations between outdoor air quality and birth weight: a geostatistical sequential simulation approach in Coastal Alentejo,Portugal. Stochastic Environmental Research and Risk Assessment, 28, 527–540. https://doi.org/10.1007/s00477-013-0770-6
Chai, T., & Oceanic, N. (2015). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
Chaparro, M., & Aguirre, J. (2002). Hongos Liquenizados. Departamento de Biología, Facultad de Ciencias, Sede Bogotá, Universidad Nacional de Colombia.
Cislaghi, C., & Nimis, P. L. (1997). Lichens, air pollution and lung cancer. Nature, 387(6632), 463–464.
Green, J., & Sánchez, S. (2012). La Calidad del Aire en América Latina: Una Visión Panorámica. In Clean Air Institute. https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/contaminacion_atmosferica/La_Calidad_del_Aire_en_América_Latina.pdf
Cleavitt, N. L., Hinds, J. W., Poirot, R. L., Geiser, L. H., Dibble, A. C., Leon, B., Perron, R., & Pardo, L. H. (2015). Epiphytic macrolichen communities correspond to patterns of sulfur and nitrogen deposition in the northeastern United States. The Bryologist, 118(3), 304–324. https://doi.org/10.1639/0007-2745-118.3.304
Correa-Ochoa, M. A., Vélez-Monsalve, L. C., Saldarriaga-Molina, J. C., & Jaramillo-Ciro, M. M. (2020). Evaluation of the Index of Atmospheric Purity in an American tropical valley through the sampling of corticulous lichens in different phorophyte species. Ecological Indicators, 115, 106355. https://doi.org/10.1016/j.ecolind.2020.106355
Correa, M., Zuluaga, C., Palacio, C., Pérez, J., & Jimenez, J. (2009). Surface wind coupling from free atmosphere winds to local winds in a tropical region within complex terrain. Case of study: Aburra Valley Antioquia, Colombia. Dyna, 76(158), 17–27.
Gaviria, C. F., Benavides, P. C., & Tangarife, C. A. (2011). Contaminación por material particulado (PM2, 5 y PM10) y consultas por enfermedades respiratorias en Medellín (2008-2009). Revista Facultad Nacional de Salud Pública, 29(3), 241-250. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnostico de salud Ambiental compilado.pdf
Gombert, S., Asta, J., & Seaward, M. R. D. (2004). Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of the Total Environment, 324(1-3), 183–199. https://doi.org/10.1016/j.scitotenv.2003.10.036
Gonzales Vargas, N., Luján Pérez, M., Navarro Sánchez, G., & Flores Mercado, R. (2016). Aplicabilidad de líquenes bioindicadores como herramienta de monitoreo de la calidad del aire en la ciudad de Cochabamba. Acta Nova, 7(4), 455–482.
Gupta, S., Rai, H., Kumar Upreti, D., Kumar Gupta, R., & Kumar Sharma, P. (2017). Lichenized fungi Phaeophyscia (Physciaceae, ascomycota) as indicator of ambient air heavy metal deposition, along land use gradient in an alpine habitat of Western Himalaya. Pollution Research, 36(1), 150–157.
Hagler, G. S. W., Tang, W., Freeman, M. J., Heist, D. K., Perry, S. G., & Vette, A. F. (2011). Model evaluation of roadside barrier impact on near-road air pollution. Atmospheric Environment, 45(15), 2522–2530. https://doi.org/10.1016/j.atmosenv.2011.02.030
Hawksworth, D. L., Iturriaga, T., & Crespo, A. (2005). Líquenes como bioindicadores inmediatos de contaminación y cambios medio-ambientales en los trópicos. Revista Iberoamericana de Micología, 22(2), 71–82. https://doi.org/10.1016/S1130-1406(05)70013-9
IDEAM. (2018a). Atlas Climatológico de Colombia [Base de datos]. http://atlas.ideam.gov.co/visorAtlasClimatologico.html
IDEAM. (2018b). Información Aeronáutica Climatología. Régimen anual de viento: Medellín [Base de datos]. http://bart.ideam.gov.co/cliciu/rosas/viento.htm
INE. (2019). Manual 1. Principios de Medición de la calidad del aire. Instituto Nacional de Ecología Report. https://sinaica.inecc.gob.mx/archivo/guias/1-%20Principios%20de%20Medici%C3%B3n%20de%20la%20Calidad%20del%20Aire.pdf
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 112, pp. 18). Springer. https://doi.org/10.1007/978-1-4614-7138-7
Jaramillo, M., & Botero, L. (2010). Comunidades liquénicas como bioindicadores de calidad del aire. Revista Gestión y Ambiente, 13(1), 97–110.
Jovan, S. 2008. Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California (Gen. Tech. Rep. PNW-GTR-737). U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Käffer, M. I., Martins, S. M. D. A., Alves, C., Pereira, V. C., Fachel, J., & Vargas, V. M. F. (2011). Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators, 11(5), 1319–1332. https://doi.org/10.1016/j.ecolind.2011.02.006
Kienzl, K., Riss, A., Vogel, W., Hackl, J., & Götz, B. (2003). Bioindicators and biomonitors for policy, legislation and administration. In Trace Metals and other Contaminants in the Environment (Vol. 6, pp. 85–122). Elsevier.
Li, T., Zhang, Y., Wang, J., Xu, D., Yin, Z., Chen, H., Lv, Y., Luo, J., Zeng, Y., Liu, Y., Kinney, P. L., & Shi, X. (2018). All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: a cohort study. The Lancet Public Health, 3(10), e470–e477. https://doi.org/10.1016/S2468-2667(18)30144-0
Llop, E., Pinho, P., Matos, P., Pereira, M. J., & Branquinho, C. (2012). The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecological Indicators, 13(1), 215–221. https://doi.org/10.1016/j.ecolind.2011.06.005
MADS (2012). Diagnóstico Nacional de salud ambiental. Ministerio de Ambiente y Desarrollo Sostenible Report. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnostico%20de%20salud%20Ambiental%20compilado.pdf
Monge-Nájera, J., González, M. I., Rivas Rossi, M., & Méndez, V. H. (2002). A new method to assess air pollution using lichens as bioindicators. Revista de Biología Tropical, 50(1), 321–325. http://www.ncbi.nlm.nih.gov/pubmed/12298260
Nimis, P. L., Castello, M., & Perotti, M. (1990). Lichens as biomonitors of sulphur dioxide pollution in la spezia (northern Italy). The Lichenologist, 22(3), 333–344. https://doi.org/10.1017/S0024282990000378
Ochoa-Jiménez, D. A., Prieto, M., Aragón, G., & Benitez, Á. (2015). Cambios en la composición de líquenes epífitos relacionados con la calidad del aire en la Ciudad de Loja (Ecuador). Caldasia, 2(37), 333–343. https://doi.org/10.15446/caldasia.v37n2.53867
Orange, A., James, P. W., & White, F. J. (2001). Microchemical methods for the identification of lichens. British Lichen Society.
Perlmutter, G. B., Blank, G. B., Wentworth, T. R., Lowman, M. D., Neufeld, H. S., & Plata, E. R. (2017). Effects of highway pollution on forest lichen community structure in western Wake County, North Carolina, U.S.A. The Bryologist, 120(1), 1–10. https://doi.org/10.1639/0007-2745-120.1.001
Piercey‐Normore, M. D., & DePriest, P. T. (2001). Algal switching among lichen symbioses. American Journal of Botany, 88(8), 1490–1498. https://doi.org/10.2307/3558457
Pollard, A. S., Williamson, B. J., Taylor, M., Purvis, W. O., Goossens, M., Reis, S., Aminov, P., Udachin, V., & Osborne, N. J. (2015). Integrating dispersion modelling and lichen sampling to assess harmful heavy metal pollution around the Karabash copper smelter, Russian Federation. Atmospheric Pollution Research, 6(6), 939–945. https://doi.org/10.1016/j.apr.2015.04.003
Ribeiro, M. C., Pinho, P., Branquinho, C., Llop, E., & Pereira, M. J. (2016). Science of the Total Environment Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal. Science of the Total Environment, 562, 740–750. https://doi.org/10.1016/j.scitotenv.2016.04.081
RStudio Team (2020). RStudio: Integrated Development for R. RStudio. https://rstudio.com
Saenz, A. E., Flores, F., Madrigal, L., & Di Stefano, J. F. (2007). Estimación del grado de contaminación del aire por medio de la cobertura de líquenes sobre troncos de arboles en la ciudad de San José, Costa Rica. Brenesia, 68(68), 29–35.
Salcedo, S., Vargas Rojas, D. L., & Morales Puentes, M. E. (2014). Use of Non Vascular Plant Organisms as Indicators of Urban Air Pollution (Tunja, Boyacá, Colombiano). Acta Biológica Colombiana, 19(2), 221. https://doi.org/10.15446/abc.v19n2.40681
SIATA. (2020). Sistema de Alertas Tempranas de Medellín y el Valle de Aburrá - SIATA. https://siata.gov.co/siata_nuevo
Simpson, E. (1949). Measurement of species diversity. Nature, 163(4148), 688–688.
Skirina, I. F., & Kozhenkova, S. I. (2018). ЛИХЕНОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ ПРИЗЕМНОГО ВОЗДУХА ГОРОДА НАХОДКА (ПРИМОРСКИЙ КРАЙ). Botanicheskii Zhurnal, 90(8), 1184–1196.
Szpiro, A. A., Sheppard, L., Sampson, P. D., & Kim, S. Y. (2007). Validating National Kriging Exposure Estimation. Environmental Health Perspectives, 115(7), 338–344. https://doi.org/10.1289/ehp.10205
Ulshöfer, J., & Rosner, H. J. (2001). GIS-based analysis of lichen mappings and air pollution in the area of Reutlingen (Baden-Württemberg, Germany). Meteorologische Zeitschrift, 10(4), 261–265. https://doi.org/10.1127/0941-2948/2001/0010-0261
Van Dijk, C., Van Doorn, W., & Van Alfen, B. (2015). Chemosphere Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands. Chemosphere, 122, 45–51. https://doi.org/10.1016/j.chemosphere.2014.11.002
Varela, Z., López-Sánchez, G., Yáñez, M., Pérez, C., Fernández, J. A., Matos, P., Branquinho, C., & Aboal, J. R. (2018). Changes in epiphytic lichen diversity are associated with air particulate matter levels: The case study of urban areas in Chile. Ecological Indicators, 91, 307–314. https://doi.org/10.1016/j.ecolind.2018.04.023
WHO (2006). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. World Health Organization Report. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=79827B3E74CD931BA68DAF66A9B2C3CD?sequence=1
WHO (2016a). Ambient Air Pollution: A global assessment of exposure and burden of disease. World Health Organization Report. http://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1
WHO (2016b). La OMS publica estimaciones nacionales sobre la exposición a la contaminación del aire y sus repercusiones para la salud. World Health Organization Webpage. https://www.who.int/es/news-room/detail/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact
Will-Wolf, S., Makholm, M. M., Nelsen, M. P., Trest, M. T., Reis, A. H., & Jovan, S. (2015). Element analysis of two common macrolichens supports bioindication of air pollution and lichen response in rural midwestern U.S.A. The Bryologist, 118(4), 371–384. https://doi.org/10.1639/0007-2745-118.4.371
Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32, 2088–2094. https://doi.org/10.1002/joc.2419
Yatawara, M., & Dayananda, N. (2019). Use of corticolous lichens for the assessment of ambient air quality along rural – urban ecosystems of tropics : a study in Sri Lanka. Environmental Monitoring Assessment, 191–179. https://doi.org/https://doi.org/10.1007/s10661-019-7334-2
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Revista de Biología Tropical