Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Distribución espacial de las comunidades de líquenes y mapeo de la contaminación del aire en una ciudad tropical: Medellín, Colombia
PDF (English)
HTML (English)

Palabras clave

biomonitoring
air quality
corticulous lichens
resistance factors
mapping lichens
lichens diversity
biomonitoreo
calidad del aire
líquenes cortícolas
factores de resistencia
mapeo de líquenes
diversidad de líquenes

Cómo citar

Correa-Ochoa, M. A., Vélez-Monsalve, L. C., & Saldarriaga-Molina, J. C. (2021). Distribución espacial de las comunidades de líquenes y mapeo de la contaminación del aire en una ciudad tropical: Medellín, Colombia. Revista De Biología Tropical, 69(3), 1107–1123. https://doi.org/10.15517/rbt.v69i3.46934

Resumen

Introducción: Existe suficiente evidencia científica de los efectos nocivos de la contaminación atmosférica sobre la salud de los seres humanos, fauna, flora y ecosistemas en general. La primera opción para el diagnóstico de la calidad del aire son las redes de monitoreo mecánicas o electrónicas, pero estas no permiten evaluar de forma directa y precisa el impacto en los organismos vivos como resultado de la exposición a contaminantes del aire. Objetivo: Evaluar los cambios en la composición de las comunidades de líquenes cortícolas como resultado a la exposición de factores de estrés ambiental en áreas con diferentes niveles de calidad del aire para diagnosticar el estado de contaminación o intervención en una zona de una manera más completa. Métodos: Se determinaron los contrastes y cambios en la calidad del aire, la riqueza y cobertura de líquenes cortícolas en respuesta a diferentes factores de estrés, como usos del suelo y distancia a carreteras, en tres diferentes áreas de biomonitoreo, las cuales fueron evaluadas usando GIS. Los datos se presentan en un mapa de isolíneas con códigos en escala de grises fácil de entender. Resultados: Indicadores como cobertura (R= -0.4) y riqueza (R= -0.7) de líquenes están inversamente correlacionados con las concentraciones de PM2.5 en cada área. Se identificaron un total de 110 especies de líquenes, siendo Phaeophyscia chloantha (Ach.) Moberg y Physcia poncinsii Hue las especies más frecuentes (presentes en 38 y 33 % de los 86 forófitos muestreados, respectivamente). Las relaciones intra-área de riqueza de líquenes exhiben relaciones significativas con respecto al uso del suelo y distancia a carreteras (con coeficientes de correlación mayores a 0.5) y el índice de Simpson fue mayor a 0.9, en lugares con mejores condiciones en términos de calidad del aire y microambientes. Asimismo, los factores de resistencia calculados sugieren que las especies más sensibles se pueden encontrar en ambientes con menor grado de perturbación. Conclusión: Estas evaluaciones representan más elementos de criterio para el diagnóstico de la salud ambiental en las áreas de biomonitoreo.

https://doi.org/10.15517/rbt.v69i3.46934
PDF (English)
HTML (English)

Citas

Aguiar-Gil, D., Gómez-Peláez, L. M., Álvarez-Jaramillo, T., Correa-Ochoa, M. A., & Saldarriaga-Molina, J. C. (2020). Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmospheric Environment, 224, 117343. https://doi.org/10.1016/j.atmosenv.2020.117343

Alcaldía de Medellín. (2021). Geomedellín. Portal gráfico del municipio de Medellín. Web Page. https://www.medellin.gov.co/geomedellin/index.hyg

AMVA & Clean Air Institute (2017). Plan integral de gestión de la calidad del aire para el área metropolitana del Valle de Aburrá 2017-2030. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/PIGECA/PIGECA-Aprobado-Dic-2017.pdf

Anze, R., Franken, M., Zaballa, M., Pinto, M. R., Zeballos, G., Cuadros, M. D. L. Á., Canseco, Á., Rocha, A. de, Estellano, V. H., & del Granado, S. (2007). Bioindicadores en la detección de la contaminación atmosférica en Bolivia. Revista Virtual REDESMA, 53–74. https://cebem.org/revistaredesma/vol1/pdf/redesma0101_art03.pdf

Aragón, G., Abuja, L., Belinchón, R., & Martínez, I. (2015). Edge type determines the intensity of forest edge effect on epiphytic communities. European Journal of Forest Res, 451, 443–451. https://doi.org/10.1007/s10342-015-0863-5

Augusto, S., Máguas, C., & Branquinho, C. (2013). Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses - A review. Environmental Pollution, 180, 330–338. https://doi.org/10.1016/j.envpol.2013.05.019

Barreno, E., & Pérez-Ortega, S. (2003). Líquenes de la Reserva Natural Integral de Muniellos, Asturias. Principado de Asturias. Ediciones KRK. https://doi.org/10.15713/ins.mmj.3

BID (2016). Estudios de casos internacionales de ciudades inteligentes: Medellín, Colombia (Documento para discusión Nº IDB-DP-443). Banco Interamericano de Desarrollo. https://publications.iadb.org/bitstream/handle/11319/7716/Estudios-de-casos-internacionales-de-ciudades-inteligentes-Medellin-Colombia.pdf?sequence=1

Cakmak, S., Hebbern, C., Pinault, L., Lavigne, E., Vanos, J., Crouse, D. L., & Tjepkema, M. (2018). Associations between long-term PM2.5 and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. Environment International, 111, 200–211. https://doi.org/10.1016/j.envint.2017.11.030

Castro, M., Pinho, P., Llop, E., Branquinho, C., Soares, A., & Joa, M. (2014). Associations between outdoor air quality and birth weight: a geostatistical sequential simulation approach in Coastal Alentejo,Portugal. Stochastic Environmental Research and Risk Assessment, 28, 527–540. https://doi.org/10.1007/s00477-013-0770-6

Chai, T., & Oceanic, N. (2015). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Chaparro, M., & Aguirre, J. (2002). Hongos Liquenizados. Departamento de Biología, Facultad de Ciencias, Sede Bogotá, Universidad Nacional de Colombia.

Cislaghi, C., & Nimis, P. L. (1997). Lichens, air pollution and lung cancer. Nature, 387(6632), 463–464.

Green, J., & Sánchez, S. (2012). La Calidad del Aire en América Latina: Una Visión Panorámica. In Clean Air Institute. https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/contaminacion_atmosferica/La_Calidad_del_Aire_en_América_Latina.pdf

Cleavitt, N. L., Hinds, J. W., Poirot, R. L., Geiser, L. H., Dibble, A. C., Leon, B., Perron, R., & Pardo, L. H. (2015). Epiphytic macrolichen communities correspond to patterns of sulfur and nitrogen deposition in the northeastern United States. The Bryologist, 118(3), 304–324. https://doi.org/10.1639/0007-2745-118.3.304

Correa-Ochoa, M. A., Vélez-Monsalve, L. C., Saldarriaga-Molina, J. C., & Jaramillo-Ciro, M. M. (2020). Evaluation of the Index of Atmospheric Purity in an American tropical valley through the sampling of corticulous lichens in different phorophyte species. Ecological Indicators, 115, 106355. https://doi.org/10.1016/j.ecolind.2020.106355

Correa, M., Zuluaga, C., Palacio, C., Pérez, J., & Jimenez, J. (2009). Surface wind coupling from free atmosphere winds to local winds in a tropical region within complex terrain. Case of study: Aburra Valley Antioquia, Colombia. Dyna, 76(158), 17–27.

Gaviria, C. F., Benavides, P. C., & Tangarife, C. A. (2011). Contaminación por material particulado (PM2, 5 y PM10) y consultas por enfermedades respiratorias en Medellín (2008-2009). Revista Facultad Nacional de Salud Pública, 29(3), 241-250. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnostico de salud Ambiental compilado.pdf

Gombert, S., Asta, J., & Seaward, M. R. D. (2004). Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of the Total Environment, 324(1-3), 183–199. https://doi.org/10.1016/j.scitotenv.2003.10.036

Gonzales Vargas, N., Luján Pérez, M., Navarro Sánchez, G., & Flores Mercado, R. (2016). Aplicabilidad de líquenes bioindicadores como herramienta de monitoreo de la calidad del aire en la ciudad de Cochabamba. Acta Nova, 7(4), 455–482.

Gupta, S., Rai, H., Kumar Upreti, D., Kumar Gupta, R., & Kumar Sharma, P. (2017). Lichenized fungi Phaeophyscia (Physciaceae, ascomycota) as indicator of ambient air heavy metal deposition, along land use gradient in an alpine habitat of Western Himalaya. Pollution Research, 36(1), 150–157.

Hagler, G. S. W., Tang, W., Freeman, M. J., Heist, D. K., Perry, S. G., & Vette, A. F. (2011). Model evaluation of roadside barrier impact on near-road air pollution. Atmospheric Environment, 45(15), 2522–2530. https://doi.org/10.1016/j.atmosenv.2011.02.030

Hawksworth, D. L., Iturriaga, T., & Crespo, A. (2005). Líquenes como bioindicadores inmediatos de contaminación y cambios medio-ambientales en los trópicos. Revista Iberoamericana de Micología, 22(2), 71–82. https://doi.org/10.1016/S1130-1406(05)70013-9

IDEAM. (2018a). Atlas Climatológico de Colombia [Base de datos]. http://atlas.ideam.gov.co/visorAtlasClimatologico.html

IDEAM. (2018b). Información Aeronáutica Climatología. Régimen anual de viento: Medellín [Base de datos]. http://bart.ideam.gov.co/cliciu/rosas/viento.htm

INE. (2019). Manual 1. Principios de Medición de la calidad del aire. Instituto Nacional de Ecología Report. https://sinaica.inecc.gob.mx/archivo/guias/1-%20Principios%20de%20Medici%C3%B3n%20de%20la%20Calidad%20del%20Aire.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 112, pp. 18). Springer. https://doi.org/10.1007/978-1-4614-7138-7

Jaramillo, M., & Botero, L. (2010). Comunidades liquénicas como bioindicadores de calidad del aire. Revista Gestión y Ambiente, 13(1), 97–110.

Jovan, S. 2008. Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California (Gen. Tech. Rep. PNW-GTR-737). U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

Käffer, M. I., Martins, S. M. D. A., Alves, C., Pereira, V. C., Fachel, J., & Vargas, V. M. F. (2011). Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators, 11(5), 1319–1332. https://doi.org/10.1016/j.ecolind.2011.02.006

Kienzl, K., Riss, A., Vogel, W., Hackl, J., & Götz, B. (2003). Bioindicators and biomonitors for policy, legislation and administration. In Trace Metals and other Contaminants in the Environment (Vol. 6, pp. 85–122). Elsevier.

Li, T., Zhang, Y., Wang, J., Xu, D., Yin, Z., Chen, H., Lv, Y., Luo, J., Zeng, Y., Liu, Y., Kinney, P. L., & Shi, X. (2018). All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: a cohort study. The Lancet Public Health, 3(10), e470–e477. https://doi.org/10.1016/S2468-2667(18)30144-0

Llop, E., Pinho, P., Matos, P., Pereira, M. J., & Branquinho, C. (2012). The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecological Indicators, 13(1), 215–221. https://doi.org/10.1016/j.ecolind.2011.06.005

MADS (2012). Diagnóstico Nacional de salud ambiental. Ministerio de Ambiente y Desarrollo Sostenible Report. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnostico%20de%20salud%20Ambiental%20compilado.pdf

Monge-Nájera, J., González, M. I., Rivas Rossi, M., & Méndez, V. H. (2002). A new method to assess air pollution using lichens as bioindicators. Revista de Biología Tropical, 50(1), 321–325. http://www.ncbi.nlm.nih.gov/pubmed/12298260

Nimis, P. L., Castello, M., & Perotti, M. (1990). Lichens as biomonitors of sulphur dioxide pollution in la spezia (northern Italy). The Lichenologist, 22(3), 333–344. https://doi.org/10.1017/S0024282990000378

Ochoa-Jiménez, D. A., Prieto, M., Aragón, G., & Benitez, Á. (2015). Cambios en la composición de líquenes epífitos relacionados con la calidad del aire en la Ciudad de Loja (Ecuador). Caldasia, 2(37), 333–343. https://doi.org/10.15446/caldasia.v37n2.53867

Orange, A., James, P. W., & White, F. J. (2001). Microchemical methods for the identification of lichens. British Lichen Society.

Perlmutter, G. B., Blank, G. B., Wentworth, T. R., Lowman, M. D., Neufeld, H. S., & Plata, E. R. (2017). Effects of highway pollution on forest lichen community structure in western Wake County, North Carolina, U.S.A. The Bryologist, 120(1), 1–10. https://doi.org/10.1639/0007-2745-120.1.001

Piercey‐Normore, M. D., & DePriest, P. T. (2001). Algal switching among lichen symbioses. American Journal of Botany, 88(8), 1490–1498. https://doi.org/10.2307/3558457

Pollard, A. S., Williamson, B. J., Taylor, M., Purvis, W. O., Goossens, M., Reis, S., Aminov, P., Udachin, V., & Osborne, N. J. (2015). Integrating dispersion modelling and lichen sampling to assess harmful heavy metal pollution around the Karabash copper smelter, Russian Federation. Atmospheric Pollution Research, 6(6), 939–945. https://doi.org/10.1016/j.apr.2015.04.003

Ribeiro, M. C., Pinho, P., Branquinho, C., Llop, E., & Pereira, M. J. (2016). Science of the Total Environment Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal. Science of the Total Environment, 562, 740–750. https://doi.org/10.1016/j.scitotenv.2016.04.081

RStudio Team (2020). RStudio: Integrated Development for R. RStudio. https://rstudio.com

Saenz, A. E., Flores, F., Madrigal, L., & Di Stefano, J. F. (2007). Estimación del grado de contaminación del aire por medio de la cobertura de líquenes sobre troncos de arboles en la ciudad de San José, Costa Rica. Brenesia, 68(68), 29–35.

Salcedo, S., Vargas Rojas, D. L., & Morales Puentes, M. E. (2014). Use of Non Vascular Plant Organisms as Indicators of Urban Air Pollution (Tunja, Boyacá, Colombiano). Acta Biológica Colombiana, 19(2), 221. https://doi.org/10.15446/abc.v19n2.40681

SIATA. (2020). Sistema de Alertas Tempranas de Medellín y el Valle de Aburrá - SIATA. https://siata.gov.co/siata_nuevo

Simpson, E. (1949). Measurement of species diversity. Nature, 163(4148), 688–688.

Skirina, I. F., & Kozhenkova, S. I. (2018). ЛИХЕНОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ ПРИЗЕМНОГО ВОЗДУХА ГОРОДА НАХОДКА (ПРИМОРСКИЙ КРАЙ). Botanicheskii Zhurnal, 90(8), 1184–1196.

Szpiro, A. A., Sheppard, L., Sampson, P. D., & Kim, S. Y. (2007). Validating National Kriging Exposure Estimation. Environmental Health Perspectives, 115(7), 338–344. https://doi.org/10.1289/ehp.10205

Ulshöfer, J., & Rosner, H. J. (2001). GIS-based analysis of lichen mappings and air pollution in the area of Reutlingen (Baden-Württemberg, Germany). Meteorologische Zeitschrift, 10(4), 261–265. https://doi.org/10.1127/0941-2948/2001/0010-0261

Van Dijk, C., Van Doorn, W., & Van Alfen, B. (2015). Chemosphere Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands. Chemosphere, 122, 45–51. https://doi.org/10.1016/j.chemosphere.2014.11.002

Varela, Z., López-Sánchez, G., Yáñez, M., Pérez, C., Fernández, J. A., Matos, P., Branquinho, C., & Aboal, J. R. (2018). Changes in epiphytic lichen diversity are associated with air particulate matter levels: The case study of urban areas in Chile. Ecological Indicators, 91, 307–314. https://doi.org/10.1016/j.ecolind.2018.04.023

WHO (2006). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. World Health Organization Report. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=79827B3E74CD931BA68DAF66A9B2C3CD?sequence=1

WHO (2016a). Ambient Air Pollution: A global assessment of exposure and burden of disease. World Health Organization Report. http://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1

WHO (2016b). La OMS publica estimaciones nacionales sobre la exposición a la contaminación del aire y sus repercusiones para la salud. World Health Organization Webpage. https://www.who.int/es/news-room/detail/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact

Will-Wolf, S., Makholm, M. M., Nelsen, M. P., Trest, M. T., Reis, A. H., & Jovan, S. (2015). Element analysis of two common macrolichens supports bioindication of air pollution and lichen response in rural midwestern U.S.A. The Bryologist, 118(4), 371–384. https://doi.org/10.1639/0007-2745-118.4.371

Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32, 2088–2094. https://doi.org/10.1002/joc.2419

Yatawara, M., & Dayananda, N. (2019). Use of corticolous lichens for the assessment of ambient air quality along rural – urban ecosystems of tropics : a study in Sri Lanka. Environmental Monitoring Assessment, 191–179. https://doi.org/https://doi.org/10.1007/s10661-019-7334-2

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2021 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.