Abstract
Introduction: The lack of knowledge on seed germination and seedling establishment is a main constraint for the restoration of degraded areas, including the tropical dry forest known as Caatinga. Objective: To assess reserve and secondary metabolite mobilization during seed germination and seedling establishment in Erythina velutina. Methods: We scarified, disinfected, imbibed, sown between towel paper, and incubated seeds under controlled conditions. We hydroponically cultivated seedlings in a greenhouse. We harvested cotyledons at seed imbibition, radicle protrusion, hypocotyl emergence, apical hook formation and expansion of cordiform leaves, first trifoliate leaf, and second trifoliate leaf. Results: Seeds contained approximately 20 % starch, 14.5 storage proteins, 11.6 neutral lipids, and 5.7 % non-reducing sugars on a dry weight basis. Soluble sugars were mainly consumed from hypocotyl emergence to apical hook formation, while major reserves were mobilized from apical hook formation to expansion of first trifoliate leaf. Enzymatic activity increased from mid to late seedling establishment, causing the mobilization of starch, oils, and proteins. Terpenoid-derivatives, flavonoids, phenolic acids, and alkaloids were detected. Flavonoids and phenolic acids were present at almost all stages and terpenoid-derivatives disappeared at expansion of cordiform leaves. Conclusion: Soluble sugars support early seedling growth, while starch, oils and proteins are simultaneously mobilized from mid to late establishment by amylases, lipases, and acid proteases. The cotyledons contain secondary metabolites, which may act in seedling defense. High content of reserves and presence of secondary metabolites in the cotyledons could enable E. velutina seedlings endure stress, validating their use in the restoration of degraded areas.
References
Barros-Galvão, T., Alves-de-Oliveira, D. F., Macêdo, C. E. C., & Voigt, E. L. (2017). Modulation of reserve mobilization by sucrose, glutamine, and abscisic acid during seedling establishment in sunflower. Journal of Plant Growth Regulation, 36(1), 11–21. https://doi.org/10.1007/s00344-016-9611-4
Beevers, L. (1968). Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochemistry, 7(10), 1837–1844. https://doi.org/10.1016/S0031-9422(00)86656-X
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds-Physiology of development, germination and dormancy. Springer.
Borek, S., Ratajczak, W., & Ratajczak, L. (2015). Regulation of storage lipid metabolism in developing and germinating lupin (Lupinus spp.) seeds. Acta Physiologiae Plantarum, 37(6), 119. https://doi.org/10.1007/s11738-015-1871-2
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Carvalho, A. F. U., Farias, D. F., Rocha-Bezerra, L. C. B., Sousa, N. M., Cavalheiro, M. G., Fernandes, G. S., Brasil, I. C. F., Maia, A. A. B., Sousa, D. O. B., Vasconcelos, I. M., Gouveia, S. T., & Machado, O. L. T. (2011). Preliminary assessment of the nutritional composition of underexploited wild legumes from semi-arid Caatinga and moist forest environments of northeastern Brazil. Journal of Food Composition and Analysis, 24(4-5), 487–493. https://doi.org/10.1016/j.jfca.2011.01.013
Chacón, I. D. C., Riley-Saldaña, C. A., & González-Esquinca, A. R. (2013). Secondary metabolites during early development in plants. Phytochemistry Reviews, 12(1), 47–64. https://doi.org/10.1007/s11101-012-9250-8
Corte, V. B., Borges, E. E. L., Pontes, C. A., Leite, I. T. A., Ventrella, M. C., & Mathias, A. A. (2006). Mobilization of the reserves during germination of seeds and growth of seedlings of Caesalpinia peltophoroides Benth (Leguminosae-Caesalpinoideae). Revista Árvore, 30(6), 941–949. https://doi.org/10.1590/S0100-67622006000600009
Dantas, B. F., Correia, J. S., Marinho, L. B., & Aragão, C. A. (2008a). Biochemical changes during imbibition of Caesalpinia pyramidalis Tul. seeds. Journal of Seed Science, 30(1), 221–227. https://doi.org/10.1590/S0101-31222008000100028
Dantas, B. F., Soares, F. S. J., Lucio, A. A., & Aragão, C. A. (2008b). Biochemical changes during imbibition of Schinopsis brasiliensis Engl. seeds. Journal of Seed Science, 30(2), 214–219. https://doi.org/10.1590/S0101-31222008000200027
Dong, S., & Beckles, D. M. (2019). Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 234(2019), 80–93. https://doi.org/10.1016/j.jplph.2019.01.007
Einali, A., & Valizadeh, J. (2017). Storage reserve mobilization, gluconeogenesis, and oxidative pattern in dormant pistachio (Pistacia vera L.) seeds during cold stratification. Trees, 31(2), 659–671. https://doi.org/10.1007/s00468-016-1498-y
Elarbi, M. B., Khemiri, H., Jrid, T., & Hamida, J. B. (2009). Purification and characterization of -amylase from safflower (Carthamus tinctorius L.) germinating seeds. Comptes Rendus Biologies, 332(5), 426–432. https://doi.org/10.1016/j.crvi.2009.01.002
El-Keblawy, A., Shabana, H. A., & Navarro, T. (2018). Seed mass and germination traits relationships among different plant growth forms with aerial seed bank in the sub-tropical arid Arabian deserts. Plant Ecology & Diversity, 11(3), 39–404. https:/doi.org/10.1080/17550774.2018.14.963.65
Gommers, C. M. M., & Monte, E. (2018). Seedling establishment: A dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176(2), 1061–1074. https://doi.org/10.1104/pp.17.01460
Hildebrandt, T. M., Nesi, A. N., Araújo, W. L., & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563–1579.
International Seed Testing Association. (2006). The germination test. In M. Muschick (Ed.), International rules for seed testing 2006 (pp. 51–546). Bassersdorf.
Izmailov, N. A., & Schraiber, M. S. (1938). Farmatsiya. Farmakol.
Lima, R. B. S., Gonçalves, J. F. C., Pando, S. C., Fernandes, A. V., & Santos, A. L. W. (2008). Primary metabolite mobilization during germination in rosewood (Aniba rosaeodora Ducke) seeds. Revista Árvore, 32(1), 19–25. https://doi.org/10.1590/S0100-67622008000100003
Marriot, K. M., & Northcote, D. H. (1975). The induction of enzyme activity in the endosperm of germinating castor bean seeds. Biochemical Journal, 152(1), 65–70. https://doi.org/10.1042/bj1520065
Mayworm, M. A. S., Nascimento, A. S., & Salatino, A. (1998). Seeds of species from the ‘Caatinga’: proteins, oils and fatty acid contents. Brazilian Journal of Botany, 21(3), 299–303. https://doi.org/10.1590/S0100-84041998000300009
McCready, R. M., Guggolz, A., Silveira, V., & Owens, H. S. (1950). Determination of starch and amylase in vegetables: application to peas. Analytical Chemistry, 22(9), 1156–1158. https://doi.org/10.1021/ac60045a016
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Morris, D. L. (1948). Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 107(2775), 111–114.
Naboulsi, I., Aboulmouhajir, A., Kouisni, L., Bekkaoui, F., & Yasri, A. (2018). Plants extracts and secondary metabolites, their extraction methods and use in agriculture for controlling crop stresses and improving productivity: A review. Academia Journal of Medicinal Plants, 6(8), 223–240.
Oliveira, A. K., Coelho, M. F. B., Maia, S. S. S., Diógenes, F. E. P., & Medeiros-Filho, S. (2012). Allelopathy of extracts of different organs of coral tree on the germination of lettuce. Horticultura Brasileira, 30(3), 489–483.
Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., & Cheng, Y. (2021). Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 12(2021), 621276.
Paula, S. O., Sousa, J. A., Brito, E. S., & Gallão, M. I. (2016). The morphological characterization of the dry seeds and reserve mobilization during germination in Morinda citrifolia L. Revista Ciência Agronômica, 47(3), 556–563. https://doi.org/10.5935/1806-6690.20160067
Pereira, A. M. S., Souza, V. T. A., Coppede, J. S., França, S. C., Bertoni, B. W., & Souza, A. V. V. (2014). Seed germination and production of Erythrina mulungu and Erythrina velutina plantlets. American Journal of Plant Sciences, 5(5), 535–540.
Pinheiro, F. M., & Nair, P. K. R. (2018). Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. Forest Systems, 27(1), eR01S. http://dx.doi.org/10.5424/fs/2018271-12267
Rambo, D. F., Biegelmeyer, R., Toson, N. S. B., Dresch, R. R., Moreno, P. R. H., & Henriques, A. T. (2019). The genus Erythrina L.: a review on its alkaloids, preclinical, and clinical studies. Phytotherapy Research, 33(2019), 1–19. https://doi.org/10.1002/ptr.6321
Ribeiro, R. C., Gomes, S. E. V. G., & Dantas, B. F. (2018). Physiological quality of Erythrina velutina Willd seeds (Fabaceae) under different storage conditions. Scientia Forestalis, 46(120), 562–570.
Ribeiro, R. C., & Dantas, B. F. (2018). Mulungu Erythrina velutina Willd. Informativo Abrates, 29(1-3), 34–38.
Rodrigues, D. R., Silva, A. F., Cavalcanti, M. I. P., Escobar, I. E. C., Fraiz, A. C. R., Ribeiro, P. R. A., Ferreira Neto, R. A., Freitas, A. D. S., & Fernandes-Júnior, P. I. (2018). Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest. Brazilian Journal of Microbiology, 49(3), 503–512. https://doi.org/10.1016/j.bjm.2017.09.007
Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed Science Research, 24(1), 1–15. https://doi.org/10.1017/S0960258513000391
Soriano, D., Huante, P., Buen, A. G., & Orozco-Segovia, A. (2013). Seed reserve translocation and early seedling growth of eight tree species in a tropical deciduous forest in Mexico. Plant Ecology, 214(11), 3161–3175.
Soxhlet, F. (1879). Dia gewichanalytische bestimmung des milchfettes. Polythnisches Journal, 232(1879), 461–465.
Specht, M. J., Santos, B. A., Marshall, N., Melo, F. P. L., Leal, I. R., Tabarelli, M., & Baldauf, C. (2019). Socioeconomic differences among resident, users and neighbour populations of a protected area in the Brazilian dry forest. Journal of Environmental Management, 232(2019), 607–614. https://doi.org/10.1016/j.jenvman.2018.11.101
Tan-Wilson, A., & Wilson, K. A. (2012). Mobilization of seed protein reserves. Physiologia Plantarum, 145(1), 140–153.
Theodoulou, F. L., & Eastmond, P. J. (2012). Seed storage oil catabolism: a story of give and take. Current Opinion in Plant Biology, 15(3), 322–328.
Van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22(2), 280–283. https://doi.org/10.1016/0003-2697(68)90317-5
Veronesi, M. B., Simões, K., Santos-Junior, N. A., & Braga, M. R. (2014). Carbohydrate mobilisation in germinating seed of Enterolobium contortisiliquum and Peltophorum dubium (Fabaceae), two tropical trees used for restoration. Australian Journal of Botany, 62(2), 132–140. https://doi.org/10.1071/BT13242
Vijayakumar, V., & Haridas, M. (2021). Nutraceutical legumes: a brief review on the nutritional and medicinal values of legumes. In P. Guleria, V. Kumar, & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 51: Legume Agriculture and Biotechnology (pp. 1–28). Springer.
Voigt, E. L., Almeida, T. D., Chagas, R. M., Pontes, L. F., Viegas, R. A., & Silveira, J. A. G. (2009). Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. Journal of Plant Physiology, 166(1), 80–89. https://doi.org/10.1016/j.jplph.2008.02.008
Weidlich, E. W. A, Pescador, R., & Uhlmann, A. (2010). Resource allocation (carbohydrates) in the initial development of seedlings of Schizolobium parahyba (Vell.) S. F. Blacke (Fabaceae-Caesalpinioideae). Revista Árvore, 34(4), 627–635. https://doi.org/10.1590/S0100-67622010000400007
Wingler, A. (2018). Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiology, 176(2), 1075–1084.
Yemm, E. W., & Cocking, E. F. (1955). The determination of amino acids with ninhydrin. Analyst, 80(948), 209–213.
Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508–514. https://doi.org/10.1042/bj0570508
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Revista de Biología Tropical