Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Reserve mobilization and secondary metabolites during seed germination and seedling establishment of the tree Erythrina velutina (Fabaceae)


heterotrophy-autotrophy transition;
reserve-degrading enzymes;
specialized metabolites;
storage compounds;
tree legume
transición heterotrofia-autotrofia;
enzimas de degradación de reservas;
metabolitos especializados;
compuestos de almacenaje;
leguminosa arbórea

How to Cite

Azevedo-da-Silva, D. A., Alves-de-Oliveira, D. F., Bezerra-de-Oliveira, H. C., Feitosa, T. M., da Silva, I. B., Giordani, R. B., & Voigt, E. L. (2023). Reserve mobilization and secondary metabolites during seed germination and seedling establishment of the tree Erythrina velutina (Fabaceae). Revista De Biología Tropical, 71(1), e49004.


Introduction: The lack of knowledge on seed germination and seedling establishment is a main constraint for the restoration of degraded areas, including the tropical dry forest known as Caatinga. Objective: To assess reserve and secondary metabolite mobilization during seed germination and seedling establishment in Erythina velutina. Methods: We scarified, disinfected, imbibed, sown between towel paper, and incubated seeds under controlled conditions. We hydroponically cultivated seedlings in a greenhouse. We harvested cotyledons at seed imbibition, radicle protrusion, hypocotyl emergence, apical hook formation and expansion of cordiform leaves, first trifoliate leaf, and second trifoliate leaf. Results: Seeds contained approximately 20 % starch, 14.5 storage proteins, 11.6 neutral lipids, and 5.7 % non-reducing sugars on a dry weight basis. Soluble sugars were mainly consumed from hypocotyl emergence to apical hook formation, while major reserves were mobilized from apical hook formation to expansion of first trifoliate leaf. Enzymatic activity increased from mid to late seedling establishment, causing the mobilization of starch, oils, and proteins. Terpenoid-derivatives, flavonoids, phenolic acids, and alkaloids were detected. Flavonoids and phenolic acids were present at almost all stages and terpenoid-derivatives disappeared at expansion of cordiform leaves. Conclusion: Soluble sugars support early seedling growth, while starch, oils and proteins are simultaneously mobilized from mid to late establishment by amylases, lipases, and acid proteases. The cotyledons contain secondary metabolites, which may act in seedling defense. High content of reserves and presence of secondary metabolites in the cotyledons could enable E. velutina seedlings endure stress, validating their use in the restoration of degraded areas.


Barros-Galvão, T., Alves-de-Oliveira, D. F., Macêdo, C. E. C., & Voigt, E. L. (2017). Modulation of reserve mobilization by sucrose, glutamine, and abscisic acid during seedling establishment in sunflower. Journal of Plant Growth Regulation, 36(1), 11–21.

Beevers, L. (1968). Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochemistry, 7(10), 1837–1844.

Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds-Physiology of development, germination and dormancy. Springer.

Borek, S., Ratajczak, W., & Ratajczak, L. (2015). Regulation of storage lipid metabolism in developing and germinating lupin (Lupinus spp.) seeds. Acta Physiologiae Plantarum, 37(6), 119.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

Carvalho, A. F. U., Farias, D. F., Rocha-Bezerra, L. C. B., Sousa, N. M., Cavalheiro, M. G., Fernandes, G. S., Brasil, I. C. F., Maia, A. A. B., Sousa, D. O. B., Vasconcelos, I. M., Gouveia, S. T., & Machado, O. L. T. (2011). Preliminary assessment of the nutritional composition of underexploited wild legumes from semi-arid Caatinga and moist forest environments of northeastern Brazil. Journal of Food Composition and Analysis, 24(4-5), 487–493.

Chacón, I. D. C., Riley-Saldaña, C. A., & González-Esquinca, A. R. (2013). Secondary metabolites during early development in plants. Phytochemistry Reviews, 12(1), 47–64.

Corte, V. B., Borges, E. E. L., Pontes, C. A., Leite, I. T. A., Ventrella, M. C., & Mathias, A. A. (2006). Mobilization of the reserves during germination of seeds and growth of seedlings of Caesalpinia peltophoroides Benth (Leguminosae-Caesalpinoideae). Revista Árvore, 30(6), 941–949.

Dantas, B. F., Correia, J. S., Marinho, L. B., & Aragão, C. A. (2008a). Biochemical changes during imbibition of Caesalpinia pyramidalis Tul. seeds. Journal of Seed Science, 30(1), 221–227.

Dantas, B. F., Soares, F. S. J., Lucio, A. A., & Aragão, C. A. (2008b). Biochemical changes during imbibition of Schinopsis brasiliensis Engl. seeds. Journal of Seed Science, 30(2), 214–219.

Dong, S., & Beckles, D. M. (2019). Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 234(2019), 80–93.

Einali, A., & Valizadeh, J. (2017). Storage reserve mobilization, gluconeogenesis, and oxidative pattern in dormant pistachio (Pistacia vera L.) seeds during cold stratification. Trees, 31(2), 659–671.

Elarbi, M. B., Khemiri, H., Jrid, T., & Hamida, J. B. (2009). Purification and characterization of -amylase from safflower (Carthamus tinctorius L.) germinating seeds. Comptes Rendus Biologies, 332(5), 426–432.

El-Keblawy, A., Shabana, H. A., & Navarro, T. (2018). Seed mass and germination traits relationships among different plant growth forms with aerial seed bank in the sub-tropical arid Arabian deserts. Plant Ecology & Diversity, 11(3), 39–404. https:/

Gommers, C. M. M., & Monte, E. (2018). Seedling establishment: A dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176(2), 1061–1074.

Hildebrandt, T. M., Nesi, A. N., Araújo, W. L., & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563–1579.

International Seed Testing Association. (2006). The germination test. In M. Muschick (Ed.), International rules for seed testing 2006 (pp. 51–546). Bassersdorf.

Izmailov, N. A., & Schraiber, M. S. (1938). Farmatsiya. Farmakol.

Lima, R. B. S., Gonçalves, J. F. C., Pando, S. C., Fernandes, A. V., & Santos, A. L. W. (2008). Primary metabolite mobilization during germination in rosewood (Aniba rosaeodora Ducke) seeds. Revista Árvore, 32(1), 19–25.

Marriot, K. M., & Northcote, D. H. (1975). The induction of enzyme activity in the endosperm of germinating castor bean seeds. Biochemical Journal, 152(1), 65–70.

Mayworm, M. A. S., Nascimento, A. S., & Salatino, A. (1998). Seeds of species from the ‘Caatinga’: proteins, oils and fatty acid contents. Brazilian Journal of Botany, 21(3), 299–303.

McCready, R. M., Guggolz, A., Silveira, V., & Owens, H. S. (1950). Determination of starch and amylase in vegetables: application to peas. Analytical Chemistry, 22(9), 1156–1158.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

Morris, D. L. (1948). Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 107(2775), 111–114.

Naboulsi, I., Aboulmouhajir, A., Kouisni, L., Bekkaoui, F., & Yasri, A. (2018). Plants extracts and secondary metabolites, their extraction methods and use in agriculture for controlling crop stresses and improving productivity: A review. Academia Journal of Medicinal Plants, 6(8), 223–240.

Oliveira, A. K., Coelho, M. F. B., Maia, S. S. S., Diógenes, F. E. P., & Medeiros-Filho, S. (2012). Allelopathy of extracts of different organs of coral tree on the germination of lettuce. Horticultura Brasileira, 30(3), 489–483.

Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., & Cheng, Y. (2021). Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 12(2021), 621276.

Paula, S. O., Sousa, J. A., Brito, E. S., & Gallão, M. I. (2016). The morphological characterization of the dry seeds and reserve mobilization during germination in Morinda citrifolia L. Revista Ciência Agronômica, 47(3), 556–563.

Pereira, A. M. S., Souza, V. T. A., Coppede, J. S., França, S. C., Bertoni, B. W., & Souza, A. V. V. (2014). Seed germination and production of Erythrina mulungu and Erythrina velutina plantlets. American Journal of Plant Sciences, 5(5), 535–540.

Pinheiro, F. M., & Nair, P. K. R. (2018). Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. Forest Systems, 27(1), eR01S.

Rambo, D. F., Biegelmeyer, R., Toson, N. S. B., Dresch, R. R., Moreno, P. R. H., & Henriques, A. T. (2019). The genus Erythrina L.: a review on its alkaloids, preclinical, and clinical studies. Phytotherapy Research, 33(2019), 1–19.

Ribeiro, R. C., Gomes, S. E. V. G., & Dantas, B. F. (2018). Physiological quality of Erythrina velutina Willd seeds (Fabaceae) under different storage conditions. Scientia Forestalis, 46(120), 562–570.

Ribeiro, R. C., & Dantas, B. F. (2018). Mulungu Erythrina velutina Willd. Informativo Abrates, 29(1-3), 34–38.

Rodrigues, D. R., Silva, A. F., Cavalcanti, M. I. P., Escobar, I. E. C., Fraiz, A. C. R., Ribeiro, P. R. A., Ferreira Neto, R. A., Freitas, A. D. S., & Fernandes-Júnior, P. I. (2018). Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest. Brazilian Journal of Microbiology, 49(3), 503–512.

Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed Science Research, 24(1), 1–15.

Soriano, D., Huante, P., Buen, A. G., & Orozco-Segovia, A. (2013). Seed reserve translocation and early seedling growth of eight tree species in a tropical deciduous forest in Mexico. Plant Ecology, 214(11), 3161–3175.

Soxhlet, F. (1879). Dia gewichanalytische bestimmung des milchfettes. Polythnisches Journal, 232(1879), 461–465.

Specht, M. J., Santos, B. A., Marshall, N., Melo, F. P. L., Leal, I. R., Tabarelli, M., & Baldauf, C. (2019). Socioeconomic differences among resident, users and neighbour populations of a protected area in the Brazilian dry forest. Journal of Environmental Management, 232(2019), 607–614.

Tan-Wilson, A., & Wilson, K. A. (2012). Mobilization of seed protein reserves. Physiologia Plantarum, 145(1), 140–153.

Theodoulou, F. L., & Eastmond, P. J. (2012). Seed storage oil catabolism: a story of give and take. Current Opinion in Plant Biology, 15(3), 322–328.

Van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22(2), 280–283.

Veronesi, M. B., Simões, K., Santos-Junior, N. A., & Braga, M. R. (2014). Carbohydrate mobilisation in germinating seed of Enterolobium contortisiliquum and Peltophorum dubium (Fabaceae), two tropical trees used for restoration. Australian Journal of Botany, 62(2), 132–140.

Vijayakumar, V., & Haridas, M. (2021). Nutraceutical legumes: a brief review on the nutritional and medicinal values of legumes. In P. Guleria, V. Kumar, & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 51: Legume Agriculture and Biotechnology (pp. 1–28). Springer.

Voigt, E. L., Almeida, T. D., Chagas, R. M., Pontes, L. F., Viegas, R. A., & Silveira, J. A. G. (2009). Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. Journal of Plant Physiology, 166(1), 80–89.

Weidlich, E. W. A, Pescador, R., & Uhlmann, A. (2010). Resource allocation (carbohydrates) in the initial development of seedlings of Schizolobium parahyba (Vell.) S. F. Blacke (Fabaceae-Caesalpinioideae). Revista Árvore, 34(4), 627–635.

Wingler, A. (2018). Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiology, 176(2), 1075–1084.

Yemm, E. W., & Cocking, E. F. (1955). The determination of amino acids with ninhydrin. Analyst, 80(948), 209–213.

Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508–514.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical


Download data is not yet available.