Resumen
Introducción: La falta de conocimiento sobre la germinación de semillas y el establecimiento de plántulas es una de las principales limitaciones para la restauración de áreas degradadas, incluido el bosque seco tropical conocido como Caatinga. Objetivo: Evaluar la movilización de reservas y metabolitos secundarios durante estas etapas de desarrollo en Erythina velutina. Métodos: Las semillas fueron escarificadas, desinfectadas, embebidas, sembradas entre toallas de papel e incubadas bajo condiciones controladas. Cultivamos las plántulas hidropónicamente en un invernadero. Recolectamos los cotiledones en la imbibición de la semilla, la protrusión de la radícula, la emergencia del hipocótilo, la formación del gancho apical y la expansión de las hojas cordiformes, la primera y segunda hoja trifoliada. Resultados: Las semillas contenían 20 % de almidón, 14.5 de proteínas de almacenamiento, 11.6 de lípidos neutros y 5.7 % de azúcares no reductores en peso seco. Los azúcares solubles se consumieron desde la emergencia del hipocótilo hasta la formación del gancho apical. Las principales reservas se movilizaron desde la formación del gancho apical hasta la expansión de la primera hoja trifoliada. La actividad enzimática aumentó desde la mitad hasta el final del establecimiento de las plántulas, movilizando almidón, aceites y proteínas. Se detectaron derivados de terpenoides, flavonoides, ácidos fenólicos y alcaloides. Los flavonoides y los ácidos fenólicos estuvieron en casi todas las etapas y los derivados terpenoides desaparecieron en la expansión de las hojas cordiformes. Conclusión: Los azúcares solubles apoyan el crecimiento temprano de las plántulas; el almidón, los aceites y las proteínas se movilizan simultáneamente desde el establecimiento medio hasta el final por amilasas, lipasas y proteasas ácidas. Los cotiledones contienen metabolitos secundarios, que pueden actuar en la defensa de las plántulas. El alto contenido de reservas y los metabolitos secundarios en los cotiledones podría permitir que las plántulas de E. velutina toleren estrés, validando su uso en la restauración de áreas degradadas.
Citas
Barros-Galvão, T., Alves-de-Oliveira, D. F., Macêdo, C. E. C., & Voigt, E. L. (2017). Modulation of reserve mobilization by sucrose, glutamine, and abscisic acid during seedling establishment in sunflower. Journal of Plant Growth Regulation, 36(1), 11–21. https://doi.org/10.1007/s00344-016-9611-4
Beevers, L. (1968). Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochemistry, 7(10), 1837–1844. https://doi.org/10.1016/S0031-9422(00)86656-X
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds-Physiology of development, germination and dormancy. Springer.
Borek, S., Ratajczak, W., & Ratajczak, L. (2015). Regulation of storage lipid metabolism in developing and germinating lupin (Lupinus spp.) seeds. Acta Physiologiae Plantarum, 37(6), 119. https://doi.org/10.1007/s11738-015-1871-2
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Carvalho, A. F. U., Farias, D. F., Rocha-Bezerra, L. C. B., Sousa, N. M., Cavalheiro, M. G., Fernandes, G. S., Brasil, I. C. F., Maia, A. A. B., Sousa, D. O. B., Vasconcelos, I. M., Gouveia, S. T., & Machado, O. L. T. (2011). Preliminary assessment of the nutritional composition of underexploited wild legumes from semi-arid Caatinga and moist forest environments of northeastern Brazil. Journal of Food Composition and Analysis, 24(4-5), 487–493. https://doi.org/10.1016/j.jfca.2011.01.013
Chacón, I. D. C., Riley-Saldaña, C. A., & González-Esquinca, A. R. (2013). Secondary metabolites during early development in plants. Phytochemistry Reviews, 12(1), 47–64. https://doi.org/10.1007/s11101-012-9250-8
Corte, V. B., Borges, E. E. L., Pontes, C. A., Leite, I. T. A., Ventrella, M. C., & Mathias, A. A. (2006). Mobilization of the reserves during germination of seeds and growth of seedlings of Caesalpinia peltophoroides Benth (Leguminosae-Caesalpinoideae). Revista Árvore, 30(6), 941–949. https://doi.org/10.1590/S0100-67622006000600009
Dantas, B. F., Correia, J. S., Marinho, L. B., & Aragão, C. A. (2008a). Biochemical changes during imbibition of Caesalpinia pyramidalis Tul. seeds. Journal of Seed Science, 30(1), 221–227. https://doi.org/10.1590/S0101-31222008000100028
Dantas, B. F., Soares, F. S. J., Lucio, A. A., & Aragão, C. A. (2008b). Biochemical changes during imbibition of Schinopsis brasiliensis Engl. seeds. Journal of Seed Science, 30(2), 214–219. https://doi.org/10.1590/S0101-31222008000200027
Dong, S., & Beckles, D. M. (2019). Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 234(2019), 80–93. https://doi.org/10.1016/j.jplph.2019.01.007
Einali, A., & Valizadeh, J. (2017). Storage reserve mobilization, gluconeogenesis, and oxidative pattern in dormant pistachio (Pistacia vera L.) seeds during cold stratification. Trees, 31(2), 659–671. https://doi.org/10.1007/s00468-016-1498-y
Elarbi, M. B., Khemiri, H., Jrid, T., & Hamida, J. B. (2009). Purification and characterization of -amylase from safflower (Carthamus tinctorius L.) germinating seeds. Comptes Rendus Biologies, 332(5), 426–432. https://doi.org/10.1016/j.crvi.2009.01.002
El-Keblawy, A., Shabana, H. A., & Navarro, T. (2018). Seed mass and germination traits relationships among different plant growth forms with aerial seed bank in the sub-tropical arid Arabian deserts. Plant Ecology & Diversity, 11(3), 39–404. https:/doi.org/10.1080/17550774.2018.14.963.65
Gommers, C. M. M., & Monte, E. (2018). Seedling establishment: A dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176(2), 1061–1074. https://doi.org/10.1104/pp.17.01460
Hildebrandt, T. M., Nesi, A. N., Araújo, W. L., & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563–1579.
International Seed Testing Association. (2006). The germination test. In M. Muschick (Ed.), International rules for seed testing 2006 (pp. 51–546). Bassersdorf.
Izmailov, N. A., & Schraiber, M. S. (1938). Farmatsiya. Farmakol.
Lima, R. B. S., Gonçalves, J. F. C., Pando, S. C., Fernandes, A. V., & Santos, A. L. W. (2008). Primary metabolite mobilization during germination in rosewood (Aniba rosaeodora Ducke) seeds. Revista Árvore, 32(1), 19–25. https://doi.org/10.1590/S0100-67622008000100003
Marriot, K. M., & Northcote, D. H. (1975). The induction of enzyme activity in the endosperm of germinating castor bean seeds. Biochemical Journal, 152(1), 65–70. https://doi.org/10.1042/bj1520065
Mayworm, M. A. S., Nascimento, A. S., & Salatino, A. (1998). Seeds of species from the ‘Caatinga’: proteins, oils and fatty acid contents. Brazilian Journal of Botany, 21(3), 299–303. https://doi.org/10.1590/S0100-84041998000300009
McCready, R. M., Guggolz, A., Silveira, V., & Owens, H. S. (1950). Determination of starch and amylase in vegetables: application to peas. Analytical Chemistry, 22(9), 1156–1158. https://doi.org/10.1021/ac60045a016
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Morris, D. L. (1948). Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 107(2775), 111–114.
Naboulsi, I., Aboulmouhajir, A., Kouisni, L., Bekkaoui, F., & Yasri, A. (2018). Plants extracts and secondary metabolites, their extraction methods and use in agriculture for controlling crop stresses and improving productivity: A review. Academia Journal of Medicinal Plants, 6(8), 223–240.
Oliveira, A. K., Coelho, M. F. B., Maia, S. S. S., Diógenes, F. E. P., & Medeiros-Filho, S. (2012). Allelopathy of extracts of different organs of coral tree on the germination of lettuce. Horticultura Brasileira, 30(3), 489–483.
Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., & Cheng, Y. (2021). Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 12(2021), 621276.
Paula, S. O., Sousa, J. A., Brito, E. S., & Gallão, M. I. (2016). The morphological characterization of the dry seeds and reserve mobilization during germination in Morinda citrifolia L. Revista Ciência Agronômica, 47(3), 556–563. https://doi.org/10.5935/1806-6690.20160067
Pereira, A. M. S., Souza, V. T. A., Coppede, J. S., França, S. C., Bertoni, B. W., & Souza, A. V. V. (2014). Seed germination and production of Erythrina mulungu and Erythrina velutina plantlets. American Journal of Plant Sciences, 5(5), 535–540.
Pinheiro, F. M., & Nair, P. K. R. (2018). Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. Forest Systems, 27(1), eR01S. http://dx.doi.org/10.5424/fs/2018271-12267
Rambo, D. F., Biegelmeyer, R., Toson, N. S. B., Dresch, R. R., Moreno, P. R. H., & Henriques, A. T. (2019). The genus Erythrina L.: a review on its alkaloids, preclinical, and clinical studies. Phytotherapy Research, 33(2019), 1–19. https://doi.org/10.1002/ptr.6321
Ribeiro, R. C., Gomes, S. E. V. G., & Dantas, B. F. (2018). Physiological quality of Erythrina velutina Willd seeds (Fabaceae) under different storage conditions. Scientia Forestalis, 46(120), 562–570.
Ribeiro, R. C., & Dantas, B. F. (2018). Mulungu Erythrina velutina Willd. Informativo Abrates, 29(1-3), 34–38.
Rodrigues, D. R., Silva, A. F., Cavalcanti, M. I. P., Escobar, I. E. C., Fraiz, A. C. R., Ribeiro, P. R. A., Ferreira Neto, R. A., Freitas, A. D. S., & Fernandes-Júnior, P. I. (2018). Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest. Brazilian Journal of Microbiology, 49(3), 503–512. https://doi.org/10.1016/j.bjm.2017.09.007
Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed Science Research, 24(1), 1–15. https://doi.org/10.1017/S0960258513000391
Soriano, D., Huante, P., Buen, A. G., & Orozco-Segovia, A. (2013). Seed reserve translocation and early seedling growth of eight tree species in a tropical deciduous forest in Mexico. Plant Ecology, 214(11), 3161–3175.
Soxhlet, F. (1879). Dia gewichanalytische bestimmung des milchfettes. Polythnisches Journal, 232(1879), 461–465.
Specht, M. J., Santos, B. A., Marshall, N., Melo, F. P. L., Leal, I. R., Tabarelli, M., & Baldauf, C. (2019). Socioeconomic differences among resident, users and neighbour populations of a protected area in the Brazilian dry forest. Journal of Environmental Management, 232(2019), 607–614. https://doi.org/10.1016/j.jenvman.2018.11.101
Tan-Wilson, A., & Wilson, K. A. (2012). Mobilization of seed protein reserves. Physiologia Plantarum, 145(1), 140–153.
Theodoulou, F. L., & Eastmond, P. J. (2012). Seed storage oil catabolism: a story of give and take. Current Opinion in Plant Biology, 15(3), 322–328.
Van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22(2), 280–283. https://doi.org/10.1016/0003-2697(68)90317-5
Veronesi, M. B., Simões, K., Santos-Junior, N. A., & Braga, M. R. (2014). Carbohydrate mobilisation in germinating seed of Enterolobium contortisiliquum and Peltophorum dubium (Fabaceae), two tropical trees used for restoration. Australian Journal of Botany, 62(2), 132–140. https://doi.org/10.1071/BT13242
Vijayakumar, V., & Haridas, M. (2021). Nutraceutical legumes: a brief review on the nutritional and medicinal values of legumes. In P. Guleria, V. Kumar, & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 51: Legume Agriculture and Biotechnology (pp. 1–28). Springer.
Voigt, E. L., Almeida, T. D., Chagas, R. M., Pontes, L. F., Viegas, R. A., & Silveira, J. A. G. (2009). Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. Journal of Plant Physiology, 166(1), 80–89. https://doi.org/10.1016/j.jplph.2008.02.008
Weidlich, E. W. A, Pescador, R., & Uhlmann, A. (2010). Resource allocation (carbohydrates) in the initial development of seedlings of Schizolobium parahyba (Vell.) S. F. Blacke (Fabaceae-Caesalpinioideae). Revista Árvore, 34(4), 627–635. https://doi.org/10.1590/S0100-67622010000400007
Wingler, A. (2018). Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiology, 176(2), 1075–1084.
Yemm, E. W., & Cocking, E. F. (1955). The determination of amino acids with ninhydrin. Analyst, 80(948), 209–213.
Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508–514. https://doi.org/10.1042/bj0570508
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2023 Revista de Biología Tropical