Abstract
Introduction: The great diversity of tropical timber species demands the development of new technologies capable of identifying them based on their patterns or anatomical characteristics. The application of convolutional neural networks (CNN) for the recognition of tropical timber species has increased in recent years due to the promising results of CNNs. Objective: To evaluate the quality of macroscopic images with three cutting tools to improve the visualization and distinction of anatomical features in the CNN model training. Methods: Samples were collected from 2020 to 2021 in areas of logging and sawmills in the Central Jungle, Peru. They were later sized and, after botanical and anatomical identification, cut in cross sections. A database of macroscopic images of the cross-section of wood was generated through cutting with three different tools and observing its performance in the laboratory, field, and checkpoint. Results: Using three cutting tools, we obtained high quality images of the cross section of wood; 3 750 macroscopic images were obtained with a portable microscope and correspond to 25 timber species. We found the “Tramontina” knife to be durable, however, it loses its edge easily and requires a sharpening tool, the “Pretul” retractable cutter is suitable for cutting soft and hard wood in small laboratory samples and finally the “Ubermann” knife is suitable for use in the field, laboratory, and checkpoint, because it has a durable sheath and interchangeable blades in case of dullness. Conclusion: The quality of the images is decisive in the classification of timber species, because it allows a better visualization and distinction of the anatomical characteristics in training with the EfficientNet B0 and Custom Vision convolutional neural network models, which was evidenced in the precision metrics.
References
Aguilar-Alvarado, J. V., & Campoverde-Molina, M. A. (2019). Classification of fruits based on convolutional neural networks. Polo de Conocimiento, 5(1), 3–22. https://doi.org/10.23857/pc.v5i01.1210
Apolinario-Lainez, M. P. E., Huamán-Bustamante, S. G., & Orellana, G. C. (2018). Deep learning applied to identification of commercial timber species from Peru. 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing, 2018, 1–4. https://doi.org/10.1109/INTERCON.2018.8526457
Apolinario, M. P. E., Urcia, D. A., & Huaman, S. G. (2019). Open set recognition of timber species using deep learning for embedded systems. IEEE Latin America Transactions, 17(12), 2005–2012. https://doi.org/10.1109/TLA.2019.9011545
Backes, A., & Sá Junior, J. J. de M. (2016). Introdução à visão computacional usando MATLAB. Alta Books Editora.
Berzal, F. (2018). Redes neuronales & deep learning. Publicación independiente. https://deep-learning.ikor.org/book
Breiman, L. (2001). Random forests. Machine Learning, 45(2), 5–32. https://doi.org/10.1023/A:1010950718922
de Andrade, B. G., Basso, V. M., & de Figueiredo-Latorraca, J. V. (2020). Machine vision for field-level wood identification. IAWA Journal, 41(4), 681–698. https://doi.org/10.1163/22941932-bja10001
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48(2019), 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Fabijańska, A., Danek, M., & Barniak, J. (2021). Wood species automatic identification from wood core images with a residual convolutional neural network. Computers and Electronics in Agriculture, 181(2021), 105941. https://doi.org/10.1016/j.compag.2020.105941
Ferreira, C. A., Inga, J. G., Vidal, O. D., Goytendia, W. E., Moya, S. M., Centeno, T. B., Vélez, A., Gamarra, D., & Tomazello-Filho, M. (2021). Identification of tree species from the Peruvian tropical amazon “Selva Central” forests according to wood anatomy. BioResources, 16(4), 7161–7179. https://doi.org/10.15376/biores.16.4.7161-7179
Ferreira, C., & Inga, G. (2022). Guía de anatomía e identificación de 50 especies maderables comerciales en Selva Central, Perú. Universidad Continental.
Filho, P. L., Oliveira, L. S., Britto, A. S., & Sabourin, R. (2010). Forest species recognition using color-based features. 20th Proceedings-International Conference on Pattern Recognition, 2010, 4178–4181. https://doi.org/10.1109/ICPR.2010.1015
Filho, P. L. P., Oliveira, L. S., Nisgoski, S., & Britto, A. S. (2014). Forest species recognition using macroscopic images. Machine Vision and Applications, 25(4), 1019–1031. https://doi.org/10.1007/s00138-014-0592-7
Gonçalves, Y. L. M., Siqueira, E. S., Ferreira, C. A., Teixeira, M. da S., Correa, P. da V., & Urbinati, C. V. (2022). Aplicação de algoritmos de Random Forest no suporte à identificação das espécies Handroanthus serratifolius (Vahl) S. O. Grose e Handroanthus impetiginosus (Mart. Ex DC.) Mattos (Bignoniaceae). Brazilian Journal of Development, 8(5), 39721–39735. https://doi.org/10.34117/bjdv8n5-457
Gu, I. Y. H., Andersson, H., & Vicen, R. (2010). Wood defect classification based on image analysis and support vector machines. Wood Science and Technology, 44(4), 693–704. https://doi.org/10.1007/s00226-009-0287-9
Hafemann, L. G., Oliveira, L. S., & Cavalin, P. (2014). Forest species recognition using deep convolutional neural networks. 22nd International Conference on Pattern Recognition, 2014, 1103–1107. https://doi.org/10.1109/ICPR.2014.199
Hanssen, F., Wischnewski, N., Moreth, U., & Magel, E. (2011). Molecular Identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata Wood Using Taxon-Specific RDNA-ITS Primers. IAWA Journal, 32(2), 273–284. https://doi.org/10.1163/22941932-90000057
Ibrahim, I., Khairuddin, A. S. M., Abu-Talip, M. S., Arof, H., & Yusof, R. (2017). Tree species recognition system based on macroscopic image analysis. Wood Science and Technology, 51(2), 431–444. https://doi.org/10.1007/s00226-016-0859-4
Khalid, M., Lew, E., Lee, Y. I., Yusof, R., & Nadaraj, M. (2008). Design of an intelligent wood species recognition system. International Journal of Simulation: Systems, Science & Technology, 9(3), 9–19.
Koch, G., & Haag, V. (2015). Control of internationally traded timber-the role of macroscopic and microscopic wood identification against illegal logging. Journal of Forensic Research, 6(6), 1000317. https://doi.org/10.4172/2157-7145.1000317
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Communication of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
Kwon, O., Lee, H. G., Lee, M. R., Jang, S., Yang, S. Y., Park, S. Y., Choi, I. G., & Yeo, H. (2017). Automatic wood species identification of Korean softwood based on convolutional neural networks. Journal of the Korean Wood Science and Technology, 45(6), 797–808. https://doi.org/10.5658/WOOD.2017.45.6.797
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lens, F., Liang, C., Guo, Y., Tang, X., Jahanbanifard, M., da Silva, F. S. C., Ceccantini, G., & Verbeek, F. J. (2020). Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 41(4), 660–680. https://doi.org/10.1163/22941932-bja10029
Livingston, S., & Risse, M. (2019). The future impact of artificial intelligence on humans and human rights. Ethics and International Affairs, 33(2), 141–158. https://doi.org/10.1017/S089267941900011X
Mata-Montero, E., Figueroa-Mata, G., Arias-Aguilar, D., Valverde-Otárola, J. C., Zamora-Villalobos, N., Paniagua-Bastos, J. C., & López-Aragón, S. (2020). Identificación automática de especies forestales maderables amenazadas de Costa Rica, mediante técnicas de visión artificial. TEC. https://hdl.handle.net/2238/13276
Morgenstern, L., & Mcilraith, S. (2011). John McCarthy’s legacy. Artificial Intelligence, 175(1), 1–24. https://doi.org/10.1016/j.artint.2010.11.003
Nouretdinov, I., Devetyarov, D., Vovk, V., Burford, B., Camuzeaux, S., Gentry-Maharaj, A., Tiss, A., Smith, C., Luo, Z., Chervonenkis, A., Hallett, R., Waterfield, M., Cramer, R., Timms, J. F., Jacobs, I., Menon, U., & Gammerman, A. (2015). Multiprobabilistic prediction in early medical diagnoses. Annals of Mathematics and Artificial Intelligence, 74(1-2), 203–222. https://doi.org/10.1007/s10472-013-9367-5
Porcelli, A., & Martínez, A. (2020). Más allá de la ciencia ficción: la inteligencia artificial un aliado contra el COVID 19. Diario DPI, 57, 1–4.
Portugal, I., Alencar, P., & Cowan, D. (2015). The use of machine learning algorithms in recommender systems: a systematic review. Expert Systems with Applications, 97, 205–227. https://doi.org/10.1016/j.eswa.2017.12.020
Rajagopal, H., Khairuddin, A. S. M., Mokhtar, N., Ahmad, A., & Yusof, R. (2019). Application of image quality assessment module to motion-blurred wood images for wood species identification system. Wood Science and Technology, 53(4), 967–981. https://doi.org/10.1007/s00226-019-01110-2
Ravindran, P., Costa, A., Soares, R., & Wiedenhoeft, A. C. (2018). Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 14(1), 14–25. https://doi.org/10.1186/s13007-018-0292-9
Ravindran, P., Ebanyenle, E., Ebeheakey, A., Abban, K., Lambog, O., Soares, R., Costa, A., & Wiedenhoeft, A. (2019). Image based identification of ghanaian timbers using the XyloTron: opportunities, risks and challenges. 33rd Conference on Neural Information Processing Systems, 2019, 1–10.
Ravindran, P., Thompson, B. J., Soares, R. K., & Wiedenhoeft, A. C. (2020). The XyloTron: flexible, open-source, image-based macroscopic field identification of wood products. Frontiers in Plant Science, 11, 1015. https://doi.org/10.3389/fpls.2020.01015
Richter, H. G., & Dallwitz, M. J. (2019). Commercial timbers: descriptions, illustrations, identification, and information retrieval. https://Www.Delta-Intkey.Com/Wood/Es/Www/Mimcecat.Htm.
da Silva, R. N., De Ridder, M., Baetens, J. M., Van den Bulcke, J., Rousseau, M., Martinez, O., Beeckman, H., Van Acker, J., & De Baets, B. (2017). Automated classification of wood transverse cross-section micro-imagery from 77 commercial Central-African timber species. Annals of Forest Science, 74(2), 30. https://doi.org/10.1007/s13595-017-0619-0
Siew, K. F., Tang, X. J., & Tay, Y. H. (2017). Improved convolutional networks in forest species identification task. Second International Workshop on Pattern Recognition, 10443, 104430C. https://doi.org/10.1117/12.2280616
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404
Simić, S., Banković, Z., Simić, D., & Simić, S. D. (2018). A hybrid clustering approach for diagnosing medical diseases. Hybrid Artificial Intelligent Systems, 10870(2018), 741–752. https://doi.org/10.1007/978-3-319-92639-1_62
Tang, X. J., Tay, Y. H., Siam, N. A., & Lim, S. C. (2018). MyWood-ID: Automated macroscopic wood identification system using smartphone and macro-lens. ACM International Conference Proceeding Series, 2018, 37–43. https://doi.org/10.1145/3293475.3293493
Turing, A. M. (1936). On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society, 42(1), 230–265.
Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., … Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350–354. https://doi.org/10.1038/s41586-019-1724-z
Yadav, A. R., Dewal, M. L., Anand, R. S., & Gupta, S. (2013). Classification of hardwood species using ANN classifier. 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Jodhpur, India. https://doi.org/10.1109/NCVPRIPG.2013.6776231
Yang, J., Huang, P., Dai, F., Sun, Y., Wang, L., & Bi, H. (2019). Application of Deep Learning in Wood Classification. 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI), 2019, 124–129. https://doi.org/10.1109/CSEI47661.2019.8938960
Ye, J. (2015). Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artificial Intelligence in Medicine, 63(3), 171–179. https://doi.org/10.1016/j.artmed.2014.12.007
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Revista de Biología Tropical